Fluxon
   HOME
*





Fluxon
In physics, a fluxon is a quantum of electromagnetic flux. The term may have any of several related meanings. Superconductivity In the context of superconductivity, in type II superconductors fluxons (also known as Abrikosov vortices) can form when the applied field lies between B_ and B_. The fluxon is a small whisker of normal phase surrounded by superconducting phase, and Supercurrents circulate around the normal core. The magnetic field through such a whisker and its neighborhood, which has size of the order of London penetration depth \lambda_L (~100 nm), is quantized because of the phase properties of the magnetic vector potential in quantum electrodynamics, see magnetic flux quantum for details. In the context of long Superconductor-Insulator-Superconductor Josephson tunnel junctions, a fluxon (aka Josephson vortex) is made of circulating supercurrents and has ''no'' normal core in the tunneling barrier. Supercurrents circulate just around the mathematical center of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Josephson Vortex
In superconductivity, a Josephson vortex (after Brian Josephson from Cambridge University) is a quantum vortex of supercurrents in a Josephson junction (see Josephson effect). The supercurrents circulate around the vortex center which is situated inside the Josephson barrier, unlike Abrikosov vortices in type-II superconductors, which are located in the superconducting condensate. Abrikosov vortices (after Alexei Abrikosov) in superconductors are characterized by normal cores where the superconducting condensate is destroyed on a scale of the superconducting coherence length ''ξ'' (typically 5-100 nm) . The cores of Josephson vortices are more complex and depend on the physical nature of the barrier. In Superconductor-Normal Metal-Superconductor (SNS) Josephson junctions there exist measurable superconducting correlations induced in the N-barrier by proximity effect from the two neighbouring superconducting electrodes. Similarly to Abrikosov vortices in superconductors, Jos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Long Josephson Junction
In superconductivity, a long Josephson junction (LJJ) is a Josephson junction which has one or more dimensions longer than the Josephson penetration depth \lambda_J. This definition is not strict. In terms of underlying model a ''short Josephson junction'' is characterized by the Josephson phase \phi(t), which is only a function of time, but not of coordinates i.e. the Josephson junction is assumed to be point-like in space. In contrast, in a long Josephson junction the Josephson phase can be a function of one or two spatial coordinates, i.e., \phi(x,t) or \phi(x,y,t). Simple model: the sine-Gordon equation The simplest and the most frequently used model which describes the dynamics of the Josephson phase \phi in LJJ is the so-called perturbed sine-Gordon equation. For the case of 1D LJJ it looks like: where subscripts x and t denote partial derivatives with respect to x and t, \lambda_J is the Josephson penetration depth, \omega_p is the Josephson plasma frequency, \omega_c is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrangian And Eulerian Coordinates
__NOTOC__ In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time. Plotting the position of an individual parcel through time gives the pathline of the parcel. This can be visualized as sitting in a boat and drifting down a river. The Eulerian specification of the flow field is a way of looking at fluid motion that focuses on specific locations in the space through which the fluid flows as time passes. This can be visualized by sitting on the bank of a river and watching the water pass the fixed location. The Lagrangian and Eulerian specifications of the flow field are sometimes loosely denoted as the Lagrangian and Eulerian frame of reference. However, in general both the Lagrangian and Eulerian specification of the flow field can be applied in any observer's frame of reference, and in any coordinate system used within the chosen fra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Resistivity
Numerical resistivity is a problem in computer simulations of ideal magnetohydrodynamics (MHD). It is a form of numerical diffusion. In near-ideal MHD systems, the magnetic field can diffuse only very slowly through the plasma or fluid of the system; it is rate-limited by the inverse of the resistivity of the fluid. In Eulerian simulations where the field is arbitrarily aligned compared to the simulation grid, the numerical diffusion rate takes the form similar to an additional resistivity, causing non-physical and sometimes bursty magnetic reconnection in the simulation. Numerical resistivity is a function of resolution, alignment of the magnetic field with the grid, and numerical method. In general, numerical resistivity will not behave isotropically, and there can be different effective numerical resistivities in different parts of the computational domain. For current (2005) simulations of the solar corona and inner heliosphere, this numerical effect can be several orders ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetohydrodynamics
Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magneto­fluids include plasmas, liquid metals, salt water, and electrolytes. The word ''magneto­hydro­dynamics'' is derived from ' meaning magnetic field, ' meaning water, and ' meaning movement. The field of MHD was initiated by Hannes Alfvén, for which he received the Nobel Prize in Physics in 1970. The fundamental concept behind MHD is that magnetic fields can induce currents in a moving conductive fluid, which in turn polarizes the fluid and reciprocally changes the magnetic field itself. The set of equations that describe MHD are a combination of the Navier–Stokes equations of fluid dynamics and Maxwell’s equations of electro­magnetism. These differential equations must be solved simultaneously, either analytically or numerically. History The first record ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supercurrent
A supercurrent is a superconducting current, that is, electric current which flows without dissipation in a superconductor. Under certain conditions, an electric current can also flow without dissipation in microscopically small non-superconducting metals. However, such currents are not called supercurrents, but persistent currents. See also * Josephson effect In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mech ... References Superconductivity {{electromagnetism-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetic Flux Quantum
The magnetic flux, represented by the symbol , threading some contour or loop is defined as the magnetic field multiplied by the loop area , i.e. . Both and can be arbitrary, meaning can be as well. However, if one deals with the superconducting loop or a hole in a bulk superconductor, the magnetic flux threading such a hole/loop is actually quantized. The (superconducting) magnetic flux quantum ≈ is a combination of fundamental physical constants: the Planck constant and the electron charge . Its value is, therefore, the same for any superconductor. The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. M. Fairbank and, independently, by R. Doll and M. Näbauer, in 1961. The quantization of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by Fritz London in 1948 using a phenomenological model. The inverse of the flux quantum, , is called the Josephson constant, and is denoted J. It is the constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum
In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. (Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom.) Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature. E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Electrodynamics
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction. In technical terms, QED can be described as a perturbation theory of the electromagnetic quantum vacuum. Richard Feynman called it "the jewel of physics" for its extremely accurate predictions of quantities like the anomalous magnetic moment of the electron and the Lamb shift of the energy levels of hydrogen. History The first formulation of a quantum theory describing radiation and matter interaction is attributed to British scientist Paul Dirac, who ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]