Fluent Calculus
   HOME
*





Fluent Calculus
The fluent calculus is a formalism for expressing dynamical domains in first-order logic. It is a variant of the situation calculus; the main difference is that situations are considered representations of states. A binary function symbol \circ is used to concatenate the terms that represent facts that hold in a situation. For example, that the box is on the table in the situation s is represented by the formula \exists t . s = on(box,table) \circ t. The frame problem is solved by asserting that the situation after the execution of an action is identical to the one before but for the conditions changed by the action. For example, the action of moving the box from the table to the floor is formalized as: : State(Do(move(box,table,floor), s)) \circ on(box,table) = State(s) \circ on(box,floor) This formula states that the state after the move is added the term on(box,floor) and removed the term on(box,table). Axioms specifying that \circ is commutative and non-idempotent are necessary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Situation Calculus
The situation calculus is a logic formalism designed for representing and reasoning about dynamical domains. It was first introduced by John McCarthy in 1963. The main version of the situational calculus that is presented in this article is based on that introduced by Ray Reiter in 1991. It is followed by sections about McCarthy's 1986 version and a logic programming formulation. Overview The situation calculus represents changing scenarios as a set of first-order logic formulae. The basic elements of the calculus are: *The actions that can be performed in the world *The fluents that describe the state of the world *The situations A domain is formalized by a number of formulae, namely: *Action precondition axioms, one for each action *Successor state axioms, one for each fluent *Axioms describing the world in various situations *The foundational axioms of the situation calculus A simple robot world will be modeled as a running example. In this world there is a single robot a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frame Problem
In artificial intelligence, the frame problem describes an issue with using first-order logic (FOL) to express facts about a robot in the world. Representing the state of a robot with traditional FOL requires the use of many axioms that simply imply that things in the environment do not change arbitrarily. For example, Hayes describes a "block world" with rules about stacking blocks together. In a FOL system, additional axioms are required to make inferences about the environment (for example, that a block cannot change position unless it is physically moved). The frame problem is the problem of finding adequate collections of axioms for a viable description of a robot environment. John McCarthy (computer scientist), John McCarthy and Patrick J. Hayes defined this problem in their 1969 article, ''Some Philosophical Problems from the Standpoint of Artificial Intelligence''. In this paper, and many that came after, the formal mathematical problem was a starting point for more general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fluent (artificial Intelligence)
In artificial intelligence, a fluent is a condition that can change over time. In logical approaches to reasoning about actions, fluents can be represented in first-order logic by predicates having an argument that depends on time. For example, the condition "the box is on the table", if it can change over time, cannot be represented by \mathrm(\mathrm,\mathrm); a third argument is necessary to the predicate \mathrm to specify the time: \mathrm(\mathrm,\mathrm,t) means that the box is on the table at time t. This representation of fluents is modified in the situation calculus by using the sequence of the past actions in place of the current time. A fluent can also be represented by a function, dropping the time argument. For example, that the box is on the table can be represented by on(box,table), where on is a function and not a predicate. In first order logic, converting predicates to functions is called reification; for this reason, fluents represented by functions are said ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Frame Problem
In artificial intelligence, the frame problem describes an issue with using first-order logic (FOL) to express facts about a robot in the world. Representing the state of a robot with traditional FOL requires the use of many axioms that simply imply that things in the environment do not change arbitrarily. For example, Hayes describes a "block world" with rules about stacking blocks together. In a FOL system, additional axioms are required to make inferences about the environment (for example, that a block cannot change position unless it is physically moved). The frame problem is the problem of finding adequate collections of axioms for a viable description of a robot environment. John McCarthy (computer scientist), John McCarthy and Patrick J. Hayes defined this problem in their 1969 article, ''Some Philosophical Problems from the Standpoint of Artificial Intelligence''. In this paper, and many that came after, the formal mathematical problem was a starting point for more general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Situation Calculus
The situation calculus is a logic formalism designed for representing and reasoning about dynamical domains. It was first introduced by John McCarthy in 1963. The main version of the situational calculus that is presented in this article is based on that introduced by Ray Reiter in 1991. It is followed by sections about McCarthy's 1986 version and a logic programming formulation. Overview The situation calculus represents changing scenarios as a set of first-order logic formulae. The basic elements of the calculus are: *The actions that can be performed in the world *The fluents that describe the state of the world *The situations A domain is formalized by a number of formulae, namely: *Action precondition axioms, one for each action *Successor state axioms, one for each fluent *Axioms describing the world in various situations *The foundational axioms of the situation calculus A simple robot world will be modeled as a running example. In this world there is a single robot a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Event Calculus
The event calculus is a logical language for representing and reasoning about events and their effects first presented by Robert Kowalski and Marek Sergot in 1986. It was extended by Murray Shanahan and Rob Miller in the 1990s. Similar to other languages for reasoning about change, the event calculus represents the effects of actions on fluents. However, events can also be external to the system. In the event calculus, one can specify the value of fluents at some given time points, the events that take place at given time points, and their effects. Fluents and events In the event calculus, fluents are reified. This means that they are not formalized by means of predicates but by means of functions. A separate predicate is used to tell which fluents hold at a given time point. For example, \mathit(on(box,table),t) means that the box is on the table at time ; in this formula, is a predicate while is a function. Events are also represented as terms. The effects of events are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electronic Transactions On Artificial Intelligence
The Royal Swedish Academy of Sciences ( sv, Kungliga Vetenskapsakademien) is one of the royal academies of Sweden. Founded on 2 June 1739, it is an independent, non-governmental scientific organization that takes special responsibility for promoting natural sciences and mathematics and strengthening their influence in society, whilst endeavouring to promote the exchange of ideas between various disciplines. The goals of the academy are: * to be a forum where researchers meet across subject boundaries, * to offer a unique environment for research, * to provide support to younger researchers, * to reward outstanding research efforts, * to communicate internationally among scientists, * to advance the case for science within society and to influence research policy priorities * to stimulate interest in mathematics and science in school, and * to disseminate and popularize scientific information in various forms. Every year, the academy awards the Nobel Prizes in physics and chemis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]