Flow Coefficient
   HOME
*





Flow Coefficient
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient (or flow-capacity rating of valve) can be expressed as : C_ = Q \sqrt where: : is the rate of flow (expressed in US gallons per minute), : SG is the specific gravity of the fluid (for water = 1), : is the pressure drop across the valve (expressed in psi). In more practical terms, the ''flow coefficient'' is the volume (in US gallons) of water at that will flow per minute through a valve with a pressure drop of across the valve. The use of the flow coefficient offers a standard method of comparing valve capacities and sizing valves for specific applications that is widely accepted by industry. The general definition of the flow coefficient can be expanded into equations modeling the flow of liquids, gases and steam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fluid
In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear force applied to them. Although the term ''fluid'' generally includes both the liquid and gas phases, its definition varies among branches of science. Definitions of ''solid'' vary as well, and depending on field, some substances can be both fluid and solid. Viscoelastic fluids like Silly Putty appear to behave similar to a solid when a sudden force is applied. Substances with a very high viscosity such as pitch appear to behave like a solid (see pitch drop experiment) as well. In particle physics, the concept is extended to include fluidic matters other than liquids or gases. A fluid in medicine or biology refers any liquid constituent of the body (body fluid), whereas "liquid" is not used in this sense. Sometimes liquids given for flui ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pressure Drop
Pressure drop is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through the tube. The main determinants of resistance to fluid flow are fluid velocity through the pipe and fluid viscosity. Pressure drop increases proportionally to the frictional shear forces within the piping network. A piping network containing a high relative roughness rating as well as many pipe fittings and joints, tube convergence, divergence, turns, surface roughness, and other physical properties will affect the pressure drop. High flow velocities and/or high fluid viscosities result in a larger pressure drop across a section of pipe or a valve or elbow. Low velocity will result in lower or no pressure drop. The fluid may also be biphasic as in pneumatic conveying with a gas and a solid, in this case, the friction of the solid must also be taken into consi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orifice Plate
An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow (in the latter two cases it is often called a '). Description An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases. A little downstream of the orifice the flow reaches its point of maximum convergence, the ''vena contracta'' (see drawing to the right) where the velocity reaches its maximum and the pressure reaches its minimum. Beyond that, the flow expands, the velocity falls and the pressure increases. By measuring the difference in fluid pressure across tappings upstream and downstream of the plate, the flow rate can be obtained from Bernoulli's equation using coefficients established from extensive r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Volumetric Flow Rate
In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol (sometimes ). It contrasts with mass flow rate, which is the other main type of fluid flow rate. In most contexts a mention of ''rate of fluid flow'' is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as '' discharge''. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol , with units of m3/(m2·s), that is, m·s−1. The integration of a flux over an area gives the volumetric flow rate. The SI unit is cubic metres per second (m3/s). Another unit used is standard cubic centimetres per minute (SCCM). In US customary units and imperial units, volumetric flow rate is often expressed as cubic feet per second (ft3/s) or gallons per minute (either ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Specific Gravity
Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water (molecule), water at its densest (at ); for gases, the reference is air at room temperature (). The term "relative density" (often abbreviated r.d. or RD) is often preferred in scientific usage, whereas the term "specific gravity" is deprecation, deprecated. If a substance's relative density is less than 1 then it is less dense than the reference; if greater than 1 then it is denser than the reference. If the relative density is exactly 1 then the densities are equal; that is, equal volumes of the two substances have the same mass. If the reference material is water, then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float. A substance wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discharge Coefficient
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge,Sam Mannan, Frank P. Lee, ''Lee's Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control'', Volume 1, Elsevier Butterworth Heinemann, 2005. (Google books)/ref> i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures. Mathematically the discharge coefficient may be related to the mass flow rate of a fluid through a straight tube of constant cross-sectional area through the following: : C_\text = \frac = \frac = \frac = \frac : C_\text = \frac Where: :C_\text, discharge coefficient through the constriction (dimensionless). :\dot, mass flow rate of fluid through constriction (mass per time). :\rho, density of fluid (mass per vol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Emerson Electric
Emerson Electric Co. is an American multinational corporation headquartered in Ferguson, Missouri. The ''Fortune'' 500 company manufactures products and provides engineering services for industrial, commercial, and consumer markets."David Farr"
Emerson has approximately 86,700 employees and 170 manufacturing locations.


History

Emerson was established in 1890 in , as ''Emerson Electric Manufacturing Co.'' by Union veteran

picture info

Verein Deutscher Ingenieure
Verein Deutscher Ingenieure (VDI) (English: Association of German Engineers) is an organization of over 150,000 engineers and natural scientists. More than 12,000 honorary experts process the latest technical findings each year to promote the technology location. Established in 1856, it is the largest engineering association in Western Europe. Its role in Germany is comparable to that of the American Society of Civil Engineers (ASCE) in the United States or Engineers Australia (EA) in Australia, but includes broader field work. It is not a union, but promotes the advancement of technology and represents the interests of engineers and engineering businesses in Germany. History The organization was founded on May 12, 1856 by fellow researchers from the Academic Fraternity Hütte, in the small town of Alexisbad, with the first journal officially being released to the public in 1857. In 1866 the VDI helped establish the predecessor of Technischer Überwachungsverein, the Dampfkesselübe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VDE E
VDE may refer to: Science and technology * Virtual Distributed Ethernet, a virtualised network infrastructure * Violaxanthin de-epoxidase, an enzyme * Visteon Dockable Entertainment, a portable DVD player with Game Boy Advance slot Other uses * VDE e.V. The VDE e. V. (german: Verband der Elektrotechnik, Elektronik und Informationstechnik) is one of Europe’s largest technical-scientific associations with 36,000 members, including 1,300 corporate and institutional members and 8,000 students. ... (''Verband der Elektrotechnik, Elektronik und Informationstechnik''), a German technical association * German Unification Transport Projects (German initials "VDE"), transportation infrastructure projects {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discharge Coefficient
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge,Sam Mannan, Frank P. Lee, ''Lee's Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control'', Volume 1, Elsevier Butterworth Heinemann, 2005. (Google books)/ref> i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures. Mathematically the discharge coefficient may be related to the mass flow rate of a fluid through a straight tube of constant cross-sectional area through the following: : C_\text = \frac = \frac = \frac = \frac : C_\text = \frac Where: :C_\text, discharge coefficient through the constriction (dimensionless). :\dot, mass flow rate of fluid through constriction (mass per time). :\rho, density of fluid (mass per vol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]