Finsler–Hadwiger Theorem
   HOME
*



picture info

Finsler–Hadwiger Theorem
The Finsler–Hadwiger theorem is statement in Euclidean plane geometry that describes a third square derived from any two squares that share a vertex. The theorem is named after Paul Finsler and Hugo Hadwiger, who published it in 1937 as part of the same paper in which they published the Hadwiger–Finsler inequality In mathematics, the Hadwiger–Finsler inequality is a result on the geometry of triangles in the Euclidean plane. It states that if a triangle in the plane has side lengths ''a'', ''b'' and ''c'' and area ''T'', then :a^ + b^ + c^ \geq (a - b)^ ... relating the side lengths and area of a triangle. Statement To state the theorem, suppose that ABCD and AB'C'D' are two squares with common vertex A. Let E and G be the midpoints of B'D and D'B respectively, and let F and H be the centers of the two squares. Then the theorem states that the quadrilateral EFGH is a square as well. The square EFGH is called the Finsler–Hadwiger square of the two given squares. Appl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadwiger Finsler Theorem
Hugo Hadwiger (23 December 1908 in Karlsruhe, Germany – 29 October 1981 in Bern, Switzerland) was a Swiss mathematician, known for his work in geometry, combinatorics, and cryptography. Biography Although born in Karlsruhe, Germany, Hadwiger grew up in Bern, Switzerland.. He did his undergraduate studies at the University of Bern, where he majored in mathematics but also studied physics and actuarial science. He continued at Bern for his graduate studies, and received his Ph.D. in 1936 under the supervision of Willy Scherrer. He was for more than forty years a professor of mathematics at Bern. Mathematical concepts named after Hadwiger Hadwiger's theorem in integral geometry classifies the isometry-invariant valuations on compact convex sets in ''d''-dimensional Euclidean space. According to this theorem, any such valuation can be expressed as a linear combination of the intrinsic volumes; for instance, in two dimensions, the intrinsic volumes are the area, the peri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Plane Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logical system in which each result is '' proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory, explained in geometrical language. For more than two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geomet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ''ABCD'' would be denoted . Characterizations A convex quadrilateral is a square if and only if it is any one of the following: * A rectangle with two adjacent equal sides * A rhombus with a right vertex angle * A rhombus with all angles equal * A parallelogram with one right vertex angle and two adjacent equal sides * A quadrilateral with four equal sides and four right angles * A quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other (i.e., a rhombus with equal diagonals) * A convex quadrilateral with successiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (geometry)
In geometry, a vertex (in plural form: vertices or vertexes) is a point (geometry), point where two or more curves, line (geometry), lines, or edge (geometry), edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedron, polyhedra are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two Line (mathematics)#Ray, rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection (Euclidean geometry), intersection of Edge (geometry), edges, face (geometry), faces or facets of the object. In a polygon, a vertex is called "convex set, convex" if the internal an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Paul Finsler
Paul Finsler (born 11 April 1894, in Heilbronn, Germany, died 29 April 1970 in Zurich, Switzerland) was a German and Swiss mathematician. Finsler did his undergraduate studies at the Technische Hochschule Stuttgart, and his graduate studies at the University of Göttingen, where he received his Ph.D. in 1919 under the supervision of Constantin Carathéodory. He studied for his habilitation at the University of Cologne, receiving it in 1922. He joined the faculty of the University of Zurich in 1927, and was promoted to ordinary professor there in 1944. Finsler's thesis work concerned differential geometry, and Finsler spaces were named after him by Élie Cartan in 1934. The Hadwiger–Finsler inequality, a relation between the side lengths and area of a triangle in the Euclidean plane, is named after Finsler and his co-author Hugo Hadwiger, as is the Finsler–Hadwiger theorem on a square derived from two other squares that share a vertex. Finsler is also known for his work ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hugo Hadwiger
Hugo Hadwiger (23 December 1908 in Karlsruhe, Germany – 29 October 1981 in Bern, Switzerland) was a Swiss mathematician, known for his work in geometry, combinatorics, and cryptography. Biography Although born in Karlsruhe, Germany, Hadwiger grew up in Bern, Switzerland.. He did his undergraduate studies at the University of Bern, where he majored in mathematics but also studied physics and actuarial science. He continued at Bern for his graduate studies, and received his Ph.D. in 1936 under the supervision of Willy Scherrer. He was for more than forty years a professor of mathematics at Bern. Mathematical concepts named after Hadwiger Hadwiger's theorem in integral geometry classifies the isometry-invariant valuations on compact convex sets in ''d''-dimensional Euclidean space. According to this theorem, any such valuation can be expressed as a linear combination of the intrinsic volumes; for instance, in two dimensions, the intrinsic volumes are the area, the perimeter, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hadwiger–Finsler Inequality
In mathematics, the Hadwiger–Finsler inequality is a result on the geometry of triangles in the Euclidean plane. It states that if a triangle in the plane has side lengths ''a'', ''b'' and ''c'' and area ''T'', then :a^ + b^ + c^ \geq (a - b)^ + (b - c)^ + (c - a)^ + 4 \sqrt T \quad \mbox. Related inequalities * Weitzenböck's inequality is a straightforward corollary of the Hadwiger–Finsler inequality: if a triangle in the plane has side lengths ''a'', ''b'' and ''c'' and area ''T'', then :a^ + b^ + c^ \geq 4 \sqrt T \quad \mbox. Hadwiger–Finsler inequality is actually equivalent to Weitzenböck's inequality. Applying (W) to the circummidarc triangle gives (HF) Weitzenböck's inequality can also be proved using Heron's formula, by which route it can be seen that equality holds in (W) if and only if the triangle is an equilateral triangle, i.e. ''a'' = ''b'' = ''c''. * A version for quadrilateral: Let ''ABCD'' be a convex quadrilateral with the length ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commentarii Mathematici Helvetici
The ''Commentarii Mathematici Helvetici'' is a quarterly peer-reviewed scientific journal in mathematics. The Swiss Mathematical Society started the journal in 1929 after a meeting in May of the previous year. The Swiss Mathematical Society still owns and operates the journal; the publishing is currently handled on its behalf by the European Mathematical Society. The scope of the journal includes research articles in all aspects in mathematics. The editors-in-chief have been Rudolf Fueter (1929–1949), J.J. Burckhardt (1950–1981), P. Gabriel (1982–1989), H. Kraft (1990–2005), and Eva Bayer-Fluckiger (2006–present). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2019 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Van Aubel's Theorem
In plane geometry, Van Aubel's theorem describes a relationship between squares constructed on the sides of a quadrilateral. Starting with a given convex quadrilateral, construct a square, external to the quadrilateral, on each side. Van Aubel's theorem states that the two line segments between the centers of opposite squares are of equal lengths and are at right angles to one another. Another way of saying the same thing is that the center points of the four squares form the vertices of an equidiagonal orthodiagonal quadrilateral. The theorem is named after Belgian mathematician Henricus Hubertus (Henri) Van Aubel (1830–1906), who published it in 1878. The theorem holds true also for re-entrant quadrilaterals, Coxeter, H.S.M., and Greitzer, Samuel L. 1967. ''Geometry Revisited'', pages 52. and when the squares are constructed internally to the given quadrilateral.D. Pellegrinetti"The Six-Point Circle for the Quadrangle" ''International Journal of Geometry'', Vol. 8 (Oct., 20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems About Quadrilaterals
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]