Final Value Theorem
   HOME
*





Final Value Theorem
In mathematical analysis, the final value theorem (FVT) is one of several similar theorems used to relate frequency domain expressions to the time domain behavior as time approaches infinity. Mathematically, if f(t) in continuous time has (unilateral) Laplace transform F(s), then a final value theorem establishes conditions under which :\lim_f(t) = \lim_ Likewise, if f /math> in discrete time has (unilateral) Z-transform F(z), then a final value theorem establishes conditions under which :\lim_f = \lim_ An Abelian final value theorem makes assumptions about the time-domain behavior of f(t) (or f /math>) to calculate \lim_. Conversely, a Tauberian final value theorem makes assumptions about the frequency-domain behaviour of F(s) to calculate \lim_f(t) (or \lim_f /math>) (see Abelian and Tauberian theorems for integral transforms). Final value theorems for the Laplace transform Deducing In the following statements, the notation 's \to 0' means that s approaches 0, whereas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirichlet Integral
In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line: : \int_0^\infty \frac \,dx = \frac. This integral is not absolutely convergent, meaning \Biggl, \frac \Biggl, is not Lebesgue-integrable, and so the Dirichlet integral is undefined in the sense of Lebesgue integration. It is, however, defined in the sense of the improper Riemann integral or the generalized Riemann or Henstock–Kurzweil integral. This can be seen by using Dirichlet's test for improper integrals. Although the sine integral, an antiderivative of the sinc function, is not an elementary function, the value of the integral (in the Riemann or Henstock sense) can be derived using various ways, including the Laplace transform, double integration, differentiating under the integral sign, contour integration, and the Dirichlet kernel. Eva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace Transform
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace (), is an integral transform In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in ... that converts a Function (mathematics), function of a Real number, real Variable (mathematics), variable (usually t, in the ''time domain'') to a function of a Complex number, complex variable s (in the complex frequency domain, also known as ''s''-domain, or s-plane). The transform has many applications in science and engineering because it is a tool for solving differential equations. In particular, it transforms ordinary differential equations into algebraic equations and convolution into multiplication. For suitable functions ''f'', the Laplace transform is the integral \mathcal\(s) = \int_0^\infty f(t)e^ \, dt. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE