FinVect
   HOME
*





FinVect
In the mathematical field of category theory, FinVect (or FdVect) is the category whose objects are all finite-dimensional vector spaces and whose morphisms are all linear maps between them. Properties FinVect has two monoidal products: * the direct sum of vector spaces, which is both a categorical product and a coproduct, * the tensor product, which makes FinVect a compact closed category. Examples Tensor networks are string diagrams interpreted in FinVect. Group representations are functors from groups, seen as one-object categories, into FinVect. DisCoCat models are monoidal functors from a pregroup grammar to FinVect. See also * FinSet * ZX-calculus * category of modules In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring o ... References {{reflist Categories in categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DisCoCat
DisCoCat (Categorical Compositional Distributional) is a mathematical framework for natural language processing which uses category theory to unify distributional semantics with the principle of compositionality. The grammatical derivations in a categorial grammar (usually a pregroup grammar) are interpreted as linear maps acting on the tensor product of word vectors to produce the meaning of a sentence or a piece of text. String diagrams are used to visualise information flow and reason about natural language semantics. History The framework was first introduced by Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark as an application of categorical quantum mechanics to natural language processing. It started with the observation that pregroup grammars and quantum processes shared a common mathematical structure: they both form a rigid category (also known as a non-symmetric compact closed category). As such, they both benefit from a graphical calculus, which allows a purely diagr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Categories In Category Theory
Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) *Category (Vaisheshika) *Stoic categories *Category mistake Mathematics * Category (mathematics), a structure consisting of objects and arrows * Category (topology), in the context of Baire spaces * Lusternik–Schnirelmann category, sometimes called ''LS-category'' or simply ''category'' * Categorical data, in statistics Linguistics * Lexical category, a part of speech such as ''noun'', ''preposition'', etc. *Syntactic category, a similar concept which can also include phrasal categories *Grammatical category, a grammatical feature such as ''tense'', ''gender'', etc. Other * Category (chess tournament) * Objective-C categories, a computer programming concept * Pregnancy category * Prisoner security categories in the United Kingdom * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Modules
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring of integers Z, it is the same thing as the category of abelian groups. The category of right modules is defined in a similar way. Note: Some authors use the term module category for the category of modules. This term can be ambiguous since it could also refer to a category with a monoidal-category action. Properties The categories of left and right modules are abelian categories. These categories have enough projectives and enough injectives. Mitchell's embedding theorem states every abelian category arises as a full subcategory of the category of modules. Projective limits and inductive limits exist in the categories of left and right modules. Over a commutative ring, together with the tensor product of modules ⊗, the category of mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ZX-calculus
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. ZX- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




FinSet
In the mathematical field of category theory, FinSet is the category whose objects are all finite sets and whose morphisms are all functions between them. FinOrd is the category whose objects are all finite ordinal numbers and whose morphisms are all functions between them. Properties FinSet is a full subcategory of Set, the category whose objects are all sets and whose morphisms are all functions. Like Set, FinSet is a large category. FinOrd is a full subcategory of FinSet as by the standard definition, suggested by John von Neumann, each ordinal is the well-ordered set of all smaller ordinals. Unlike Set and FinSet, FinOrd is a small category. FinOrd is a skeleton of FinSet. Therefore, FinSet and FinOrd are equivalent categories. Topoi Like Set, FinSet and FinOrd are topoi. As in Set, in FinSet the categorical product of two objects ''A'' and ''B'' is given by the cartesian product , the categorical sum is given by the disjoint union , and the exponential object ''B''''A' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pregroup Grammar
Pregroup grammar (PG) is a grammar formalism intimately related to categorial grammars. Much like categorial grammar (CG), PG is a kind of type logical grammar. Unlike CG, however, PG does not have a distinguished function type. Rather, PG uses inverse types combined with its monoidal operation. Definition of a pregroup A pregroup is a partially ordered algebra (A, 1, \cdot, -^l, -^r, \leq) such that (A, 1, \cdot) is a monoid, satisfying the following relations: * x^l \cdot x \leq 1 \qquad x \cdot x^r \leq 1     (contraction) * 1 \leq x \cdot x^l \qquad 1 \leq x^r \cdot x     (expansion) The contraction and expansion relations are sometimes called Ajdukiewicz laws. From this, it can be proven that the following equations hold: * 1^l = 1 = 1^r * x^ = x = x^ * (x\cdot y)^l = y^l \cdot x^l \qquad (x\cdot y)^r = y^r \cdot x^r x^l and x^r are called the left and right adjoints of ''x'', respectively. The symbol \cdot and \leq are also writ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monoidal Functor
In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two ''coherence maps''—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors * The coherence maps of lax monoidal functors satisfy no additional properties; they are not necessarily invertible. * The coherence maps of strong monoidal functors are invertible. * The coherence maps of strict monoidal functors are identity maps. Although we distinguish between these different definitions here, authors may call any one of these simply monoidal functors. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


String Diagram
String diagrams are a formal graphical language for representing morphisms in monoidal categories, or more generally 2-cells in 2-categories. They are a prominent tool in applied category theory. When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories. History Günter Hotz gave the first mathematical definition of string diagrams in order to formalise electronic circuits, but the article remained confidential because of the absence of an English translation. The invention of string diagrams is usually credited to Roger Penrose with Feynman diagrams also described as a precursor. They were later characterised as the arrows of free monoidal categories in a seminal article by André Joyal and Ross Street. While t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]