Faddeev–LeVerrier Algorithm
   HOME
*





Faddeev–LeVerrier Algorithm
In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial p_A(\lambda)=\det (\lambda I_n - A) of a square matrix, , named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier. Calculation of this polynomial yields the eigenvalues of as its roots; as a matrix polynomial in the matrix itself, it vanishes by the fundamental Cayley–Hamilton theorem. Computing determinant from the definition of characteristic polynomial, however, is computationally cumbersome, because \lambda is new symbolic quantity, whereas this algorithm works directly with coefficients of matrix A. The algorithm has been independently rediscovered several times, in some form or another. It was first published in 1840 by Urbain Le Verrier, subsequently redeveloped by P. Horst, Jean-Marie Souriau, in its present form here by Faddeev and Sominsky, and further by J. S. Frame, and others. (For historical point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Urbain Le Verrier
Urbain Jean Joseph Le Verrier FRS (FOR) HFRSE (; 11 March 1811 – 23 September 1877) was a French astronomer and mathematician who specialized in celestial mechanics and is best known for predicting the existence and position of Neptune using only mathematics. The calculations were made to explain discrepancies with Uranus's orbit and the laws of Kepler and Newton. Le Verrier sent the coordinates to Johann Gottfried Galle in Berlin, asking him to verify. Galle found Neptune in the same night he received Le Verrier's letter, within 1° of the predicted position. The discovery of Neptune is widely regarded as a dramatic validation of celestial mechanics, and is one of the most remarkable moments of 19th-century science. Biography Early years Le Verrier was born at Saint-Lô, Manche, France, in a modest bourgeois family, his parents being, Louis-Baptiste Le Verrier and Marie-Jeanne-Josephine-Pauline de Baudre. He studied at École Polytechnique. He briefly studied chemistry und ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi's Formula
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix ''A'' in terms of the adjugate of ''A'' and the derivative of ''A''., Part Three, Section 8.3 If is a differentiable map from the real numbers to matrices, then : \frac \det A(t) = \operatorname \left (\operatorname(A(t)) \, \frac\right ) = \left(\det A(t) \right) \cdot \operatorname \left (A(t)^ \cdot \, \frac\right ) where is the trace of the matrix . (The latter equality only holds if ''A''(''t'') is invertible.) As a special case, : = \operatorname(A)_. Equivalently, if stands for the differential of , the general formula is : d \det (A) = \operatorname (\operatorname(A) \, dA). The formula is named after the mathematician Carl Gustav Jacob Jacobi. Derivation Via Matrix Computation We first prove a preliminary lemma: Lemma. Let ''A'' and ''B'' be a pair of square matrices of the same dimension ''n''. Then :\sum_i \sum_j A_ B_ = \operatorname (A^ B). ''Proof.'' The product ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix Theory
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomials
In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic variety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fredholm Determinant
In mathematics, the Fredholm determinant is a complex-valued function which generalizes the determinant of a finite dimensional linear operator. It is defined for bounded operators on a Hilbert space which differ from the identity operator by a trace-class operator. The function is named after the mathematician Erik Ivar Fredholm. Fredholm determinants have had many applications in mathematical physics, the most celebrated example being Gábor Szegő's limit formula, proved in response to a question raised by Lars Onsager and C. N. Yang on the spontaneous magnetization of the Ising model. Definition Let ''H'' be a Hilbert space and ''G'' the set of bounded invertible operators on ''H'' of the form ''I'' + ''T'', where ''T'' is a trace-class operator. ''G'' is a group because (I+T)^ - I = - T(I+T)^, so (''I''+''T'')−1−''I'' is trace class if ''T'' is. It has a natural metric given by , where is the trace-class norm. If ''H'' is a Hilbert space with inner product (\cd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Horner's Method
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. After the introduction of computers, this algorithm became fundamental for computing efficiently with polynomials. The algorithm is based on Horner's rule: :\begin a_0 &+ a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n \\ &= a_0 + x \bigg(a_1 + x \Big(a_2 + x \big(a_3 + \cdots + x(a_ + x \, a_n) \cdots \big) \Big) \bigg). \end This allows the evaluation of a polynomial of degree with only n multiplications and n additions. This is optimal, since there are polynomials of degree that cannot be evaluated with fewer arithmetic operations. Alternatively, Horner's method also refers to a method for approximating the roots of polynomials, described by H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exterior Algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors u and  v, denoted by u \wedge v, is called a bivector and lives in a space called the ''exterior square'', a vector space that is distinct from the original space of vectors. The magnitude of u \wedge v can be interpreted as the area of the parallelogram with sides u and  v, which in three dimensions can also be computed using the cross product of the two vectors. More generally, all parallel plane surfaces with the same orientation and area have the same bivector as a measure of their oriented area. Like the cross product, the exterior product is anticommutative, meaning t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any base (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bell Polynomials
In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula. Definitions Exponential Bell polynomials The ''partial'' or ''incomplete'' exponential Bell polynomials are a triangular array of polynomials given by :B_(x_1,x_2,\dots,x_) = \sum \left(\right)^\left(\right)^\cdots\left(\right)^, where the sum is taken over all sequences ''j''1, ''j''2, ''j''3, ..., ''j''''n''−''k''+1 of non-negative integers such that these two conditions are satisfied: :j_1 + j_2 + \cdots + j_ = k, :j_1 + 2 j_2 + 3 j_3 + \cdots + (n-k+1)j_ = n. The sum :B_n(x_1,\dots,x_n)=\sum_^n B_(x_1,x_2,\dots,x_) is called the ''n''th ''complete exponential Bell polynomial''. Ordinary Bell polynomials Likewise, the partial ''ordinary'' Bell polynomial is defined by :\hat_(x_1,x_2,\ldots,x_) = \sum \frac x_1^ x_2^ \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resolvent Formalism
In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus. The resolvent captures the spectral properties of an operator in the analytic structure of the functional. Given an operator , the resolvent may be defined as : R(z;A)= (A-zI)^~. Among other uses, the resolvent may be used to solve the inhomogeneous Fredholm integral equations; a commonly used approach is a series solution, the Liouville–Neumann series. The resolvent of can be used to directly obtain information about the spectral decomposition of . For example, suppose is an isolated eigenvalue in the spectrum of . That is, suppose there exists a simple closed curve C_\lambda in the complex plane that separates from the rest of the spectrum of . Then the residue : -\frac \oin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]