FRACTRAN
   HOME
*



picture info

FRACTRAN
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Conway. A FRACTRAN program is an ordered list of positive fractions together with an initial positive integer input ''n''. The program is run by updating the integer ''n'' as follows: #for the first fraction ''f'' in the list for which ''nf'' is an integer, replace ''n'' by ''nf'' #repeat this rule until no fraction in the list produces an integer when multiplied by ''n'', then halt. gives the following FRACTRAN program, called PRIMEGAME, which finds successive prime numbers: \left( \frac, \frac, \frac, \frac, \frac, \frac, \frac, \frac, \frac, \frac, \frac, \frac, \frac, \frac \right) Starting with ''n''=2, this FRACTRAN program generates the following sequence of integers: * 2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, ... After 2, this sequence contains the following powers of 2: 2^2=4,\, 2^3=8,\, 2^5=32,\, 2^7=128,\, 2^=2048,\, 2^=8192,\, 2^=131072,\, 2^=524288,\, \do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Esoteric Programming Language
An esoteric programming language (sometimes shortened to esolang) is a programming language designed to test the boundaries of computer programming language design, as a proof of concept, as software art, as a hacking interface to another language (particularly functional programming or procedural programming languages), or as a joke. The use of the word ''esoteric'' distinguishes them from languages that working developers use to write software. The creators of most esolangs do not intend them to be used for mainstream programming, although some esoteric features, such as visuospatial syntax, have inspired practical applications in the arts. Such languages are often popular among hackers and hobbyists. Usability is rarely a goal for designers of esoteric programming languages; often their design leads to quite the opposite. Their usual aim is to remove or replace conventional language features while still maintaining a language that is Turing-complete, or even one for which the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Esoteric Programming Languages
An esoteric programming language (sometimes shortened to esolang) is a programming language designed to test the boundaries of computer programming language design, as a proof of concept, as software art, as a hacking interface to another language (particularly functional programming or procedural programming languages), or as a joke. The use of the word ''esoteric'' distinguishes them from languages that working developers use to write software. The creators of most esolangs do not intend them to be used for mainstream programming, although some esoteric features, such as visuospatial syntax, have inspired practical applications in the arts. Such languages are often popular among hackers and hobbyists. Usability is rarely a goal for designers of esoteric programming languages; often their design leads to quite the opposite. Their usual aim is to remove or replace conventional language features while still maintaining a language that is Turing-complete, or even one for which the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fraction (mathematics)
A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A ''common'', ''vulgar'', or ''simple'' fraction (examples: \tfrac and \tfrac) consists of a numerator, displayed above a line (or before a slash like ), and a non-zero denominator, displayed below (or after) that line. Numerators and denominators are also used in fractions that are not ''common'', including compound fractions, complex fractions, and mixed numerals. In positive common fractions, the numerator and denominator are natural numbers. The numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. The denominator cannot be zero, because zero parts can never make up a whole. For example, in the fraction , the numerator 3 indicates that the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

One-instruction Set Computer
A one-instruction set computer (OISC), sometimes called an ultimate reduced instruction set computer (URISC), is an abstract machine that uses only one instructionobviating the need for a machine language opcode. With a judicious choice for the single instruction and given infinite resources, an OISC is capable of being a universal computer in the same manner as traditional computers that have multiple instructions. OISCs have been recommended as aids in teaching computer architecture and have been used as computational models in structural computing research. The first carbon nanotube computer is a 1-bit one-instruction set computer (and has only 178 transistors). Machine architecture In a Turing-complete model, each memory location can store an arbitrary integer, anddepending on the modelthere may be arbitrarily many locations. The instructions themselves reside in memory as a sequence of such integers. There exists a class of universal computers with a single instruction ba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Denominator
A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A ''common'', ''vulgar'', or ''simple'' fraction (examples: \tfrac and \tfrac) consists of a numerator, displayed above a line (or before a slash like ), and a non-zero denominator, displayed below (or after) that line. Numerators and denominators are also used in fractions that are not ''common'', including compound fractions, complex fractions, and mixed numerals. In positive common fractions, the numerator and denominator are natural numbers. The numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. The denominator cannot be zero, because zero parts can never make up a whole. For example, in the fraction , the numerator 3 indicates that the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Models Of Computation
In computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology. Models Models of computation can be classified into three categories: sequential models, functional models, and concurrent models. Sequential models Sequential models include: * Finite state machines * Post machines (Post–Turing machines and tag machines). * Pushdown automata * Register machines ** Random-access machines * Turing machines * Decision tree model Functional models Functional models include: * Abstract rew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Taylor & Francis
Taylor & Francis Group is an international company originating in England that publishes books and academic journals. Its parts include Taylor & Francis, Routledge, F1000 (publisher), F1000 Research or Dovepress. It is a division of Informa, Informa plc, a United Kingdom–based publisher and conference company. Overview The company was founded in 1852 when William Francis (chemist), William Francis joined Richard Taylor (editor), Richard Taylor in his publishing business. Taylor had founded his company in 1798. Their subjects covered agriculture, chemistry, education, engineering, geography, law, mathematics, medicine, and social sciences. Francis's son, Richard Taunton Francis (1883–1930), was sole partner in the firm from 1917 to 1930. In 1965, Taylor & Francis launched Wykeham Publications and began book publishing. T&F acquired Hemisphere Publishing in 1988, and the company was renamed Taylor & Francis Group to reflect the growing number of Imprint (trade name), imp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Magazine
''Mathematics Magazine'' is a refereed bimonthly publication of the Mathematical Association of America. Its intended audience is teachers of collegiate mathematics, especially at the junior/senior level, and their students. It is explicitly a journal of mathematics rather than pedagogy. Rather than articles in the terse "theorem-proof" style of research journals, it seeks articles which provide a context for the mathematics they deliver, with examples, applications, illustrations, and historical background. Paid circulation in 2008 was 9,500 and total circulation was 10,000. ''Mathematics Magazine'' is a continuation of ''Mathematics News Letter'' (1926-1934) and ''National Mathematics Magazine'' (1934-1945.) Doris Schattschneider became the first female editor of ''Mathematics Magazine'' in 1981. .. The MAA gives the Carl B. Allendoerfer Awards annually "for articles of expository excellence" published in ''Mathematics Magazine''. See also *''American Mathematical Mont ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Weight
The Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a string of bits, this is the number of 1's in the string, or the digit sum of the binary representation of a given number and the ''ℓ''₁ norm of a bit vector. In this binary case, it is also called the population count, popcount, sideways sum, or bit summation. History and usage The Hamming weight is named after Richard Hamming although he did not originate the notion. The Hamming weight of binary numbers was already used in 1899 by James W. L. Glaisher to give a formula for the number of odd binomial coefficients in a single row of Pascal's triangle. Irving S. Reed introduced a concept, equivalent to Hamming weight in the binary case, in 1954. Hamming weight is used in several disciplines including information theory, coding theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floor Function
In mathematics and computer science, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, , , , and . Historically, the floor of has been–and still is–called the integral part or integer part of , often denoted (as well as a variety of other notations). Some authors may define the integral part as if is nonnegative, and otherwise: for example, and . The operation of truncation generalizes this to a specified number of digits: truncation to zero significant digits is the same as the integer part. For an integer, . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Carl Friedrich Gauss introduced the square bracket notation in hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Turing-complete
In computability theory, a system of data-manipulation rules (such as a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine (devised by English mathematician and computer scientist Alan Turing). This means that this system is able to recognize or decide other data-manipulation rule sets. Turing completeness is used as a way to express the power of such a data-manipulation rule set. Virtually all programming languages today are Turing-complete. A related concept is that of Turing equivalence two computers P and Q are called equivalent if P can simulate Q and Q can simulate P. The Church–Turing thesis conjectures that any function whose values can be computed by an algorithm can be computed by a Turing machine, and therefore that if any real-world computer can simulate a Turing machine, it is Turing equivalent to a Turing machine. A universal Turi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]