FANCE
   HOME
*





FANCE
Fanconi anemia, complementation group E protein is a protein that in humans is encoded by the ''FANCE'' gene. The Fanconi anemia complementation group (FANC) currently includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2, FANCE, FANCF, FANCG, and FANCL. Fanconi anemia is a genetically heterogeneous recessive disorder characterized by cytogenetic instability, hypersensitivity to DNA cross-linking agents, increased chromosomal breakage, and defective DNA repair. The members of the Fanconi anemia complementation group do not share sequence similarity; they are related by their assembly into a common nuclear protein complex. This gene encodes the protein for complementation groufcrp E. A nuclear complex containing FANCE protein (as well as FANCC, FANCF and FANCG) is essential for the activation of the FANCD2 protein to the mono-ubiquitinated isoform. In normal, non-mutant cells, FANCD2 is mono-ubiquinated in response to DNA damage. FANCE together with FANCC acts as the su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

FANCD2
Fanconi anemia group D2 protein is a protein that in humans is encoded by the ''FANCD2'' gene. The Fanconi anemia complementation group ( FANC) currently includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2 (this gene), FANCE, FANCF, FANCG, FANCI , FANCJ, FANCL, FANCM, FANCN and FANCO. Function Fanconi anemia is a disorder with a recessive Mendelian pattern of inheritance characterized by chromosomal instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and defective DNA repair. The members of the Fanconi anemia complementation group do not share sequence similarity; they are related by their assembly into a common nuclear protein complex. This gene encodes the protein for complementation group D2. This protein is monoubiquitinated in response to DNA damage, resulting in its localization to nuclear foci with other proteins (BRCA1 and BRCA2) involved in homology-directed DNA repair (see Figure: Recombinational repair of DNA doub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FANCA
Fanconi anaemia, complementation group A, also known as FAA, FACA and FANCA, is a protein which in humans is encoded by the ''FANCA'' gene. It belongs to the Fanconi anaemia complementation group (FANC) family of genes of which 12 complementation groups are currently recognized and is hypothesised to operate as a post-replication repair or a cell cycle checkpoint. FANCA proteins are involved in inter-strand DNA cross-link repair and in the maintenance of normal chromosome stability that regulates the differentiation of haematopoietic stem cells into mature blood cells. Mutations involving the FANCA gene are associated with many somatic and congenital defects, primarily involving phenotypic variations of Fanconi anaemia, aplastic anaemia, and forms of cancer such as squamous cell carcinoma and acute myeloid leukaemia. Function The Fanconi anaemia complementation group (FANC) currently includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2, FANCE, FANCF, FANCG, and FAN ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FANCF
Fanconi anemia group F protein is a protein that in humans is encoded by the ''FANCF'' gene. Interactions FANCF has been shown to interact with Fanconi anemia, complementation group C, FANCG, FANCA and FANCE. Function FANCF is an adaptor protein that plays a key role in the proper assembly of the FA core complex. The FA core complex is composed of eight proteins (FANCA, -B, -C, -E, -F, -G, -L and -M). FANCF stabilizes the interaction between the FANCC/FANCE subcomplex and the FANCA/FANCG subcomplex and locks the whole FA core complex in a conformation that is essential to perform its function in DNA repair. The FA core complex is a nuclear core complex that is essential for the monoubiquitination of FANCD2 and this modified form of FANCD2 colocalizes with BRCA1, RAD51 and PCNA in foci that also contain other DNA repair proteins. All these proteins function together to facilitate DNA interstrand cross-link repair. They also function in other DNA damage response repair proce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fanconi Anemia, Complementation Group C
Fanconi anemia group C protein is a protein that in humans is encoded by the ''FANCC'' gene. Structure Function The protein encoded by this gene delays the onset of apoptosis and promotes homologous recombination repair of damaged DNA. Mutations in this gene result in Fanconi anemia. A nuclear complex containing FANCC protein (as well as FANCA, FANCF and FANCG) is essential for the activation of the FANCD2 protein to the mono-ubiquitinated isoform. In normal, non-mutant, cells FANCD2 is mono-ubiquinated in response to DNA damage. FANCC together with FANCE acts as the substrate adaptor for this reaction Activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein) at ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. Activated FANCD2 protein may function prior to the initiation of meiotic recombination, perhaps to prepare chromosomes for synapsis, or to regulate subsequent recombination events. FANCC(-/-) m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




FANCG
Fanconi anemia group G protein is a protein that in humans is encoded by the ''FANCG'' gene. Function FANCG, involved in Fanconi anemia, confers resistance to both hygromycin B and mitomycin C. FANCG contains a 5-prime GC-rich untranslated region characteristic of housekeeping genes. The putative 622-amino acid protein has a leucine-zipper motif at its N-terminus. Fanconi anemia is an autosomal recessive disorder with diverse clinical symptoms, including developmental anomalies, bone marrow failure, and early occurrence of malignancies. A minimum of 8 FA genes have been identified. The FANCG gene is responsible for complementation group G. The clinical phenotype of all Fanconi anemia (FA) complementation groups is similar. This phenotype is characterized by progressive bone marrow failure, cancer proneness and typical birth defects. The main cellular phenotype is hypersensitivity to DNA damage, particularly inter-strand DNA crosslinks. The FA proteins interact through a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FANCC
Fanconi anemia group C protein is a protein that in humans is encoded by the ''FANCC'' gene. Structure Function The protein encoded by this gene delays the onset of apoptosis and promotes homologous recombination repair of damaged DNA. Mutations in this gene result in Fanconi anemia. A nuclear complex containing FANCC protein (as well as FANCA, FANCF and FANCG) is essential for the activation of the FANCD2 protein to the mono-ubiquitinated isoform. In normal, non-mutant, cells FANCD2 is mono-ubiquinated in response to DNA damage. FANCC together with FANCE acts as the substrate adaptor for this reaction Activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein) at ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. Activated FANCD2 protein may function prior to the initiation of meiotic recombination, perhaps to prepare chromosomes for synapsis, or to regulate subsequent recombination events. FANCC(-/-) m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FANCB
Fanconi anemia group B protein is a protein that in humans is encoded by the ''FANCB'' gene. Function The Fanconi anemia complementation group (FANC) currently includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2, FANCE, FANCF, FANCG, and FANCL. Fanconi anemia is a genetically heterogeneous recessive disorder characterized by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and defective DNA repair. The members of the Fanconi anemia complementation group do not share sequence similarity; they are related by their assembly into a common nuclear protein complex. This gene encodes the protein for complementation group B. Alternative splicing results in two transcript variants encoding the same protein. Gene FANCB is the only gene known to cause X-linked Fanconi Anemia. In female carriers of FANCB mutations (one wild-type FANCB allele and one mutant FANCB allele) there is strong selection through X-inactivation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FANCL
E3 ubiquitin-protein ligase FANCL is an enzyme that in humans is encoded by the ''FANCL'' gene. Function The clinical phenotype of mutational defects in all Fanconi anemia (FA) complementation groups is similar. This phenotype is characterized by progressive bone marrow failure, cancer proneness and typical birth defects. The main cellular phenotype is hypersensitivity to DNA damage, particularly inter-strand DNA crosslinks. The FA proteins interact through a multi-protein pathway. DNA interstrand crosslinks are highly deleterious damages that are repaired by homologous recombination involving coordination of FA proteins and ''breast cancer susceptibility gene 1 (BRCA1)''. The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzyme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epitope Mapping
In immunology, epitope mapping is the process of experimentally identifying the binding site, or ''epitope'', of an antibody on its target antigen (usually, on a protein). Identification and characterization of antibody binding sites aid in the discovery and development of new therapeutics, vaccines, and diagnostics. Epitope characterization can also help elucidate the mechanism of binding for an antibody and can strengthen intellectual property (patent) protection. Experimental epitope mapping data can be incorporated into robust algorithms to facilitate ''in silico'' prediction of B-cell epitopes based on sequence and/or structural data. Epitopes are generally divided into three classes: linear, conformational and discontinuous. Linear epitopes are formed by a continuous sequence of amino acids in a protein. In conformational epitopes the binding residues are contained within certain key protein structural conformations, such as in helices, loops or beta sheets. The conformation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zygosity
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Most eukaryotes have two matching sets of chromosomes; that is, they are diploid. Diploid organisms have the same loci on each of their two sets of homologous chromosomes except that the sequences at these loci may differ between the two chromosomes in a matching pair and that a few chromosomes may be mismatched as part of a chromosomal sex-determination system. If both alleles of a diploid organism are the same, the organism is homozygous at that locus. If they are different, the organism is heterozygous at that locus. If one allele is missing, it is hemizygous, and, if both alleles are missing, it is nullizygous. The DNA sequence of a gene often varies from one individual to another. These gene variants are called alleles. While some gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene Mapping
Gene mapping describes the methods used to identify the locus of a gene and the distances between genes. Gene mapping can also describe the distances between different sites within a gene. The essence of all genome mapping is to place a collection of molecular markers onto their respective positions on the genome. Molecular markers come in all forms. Genes can be viewed as one special type of genetic markers in the construction of genome maps, and mapped the same way as any other markers. In some areas of study, gene mapping contributes to the creation of new recombinants within an organism. Genetic vs physical There are two distinctive types of "maps" used in the field of genome mapping: genetic maps and physical maps. While both maps are a collection of genetic markers and gene loci, genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs. While the physical map cou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]