HOME





Fubini's Theorem
In mathematical analysis, Fubini's theorem characterizes the conditions under which it is possible to compute a double integral by using an iterated integral. It was introduced by Guido Fubini in 1907. The theorem states that if a function is Lebesgue integrable on a rectangle X\times Y, then one can evaluate the double integral as an iterated integral:\, \iint\limits_ f(x,y)\,\text(x,y) = \int_X\left(\int_Y f(x,y)\,\texty\right)\textx=\int_Y\left(\int_X f(x,y) \, \textx \right) \texty. This formula is generally not true for the Riemann integral, but it is true if the function is continuous on the rectangle. In multivariable calculus, this weaker result is sometimes also called Fubini's theorem, although it was already known by Leonhard Euler. Tonelli's theorem, introduced by Leonida Tonelli in 1909, is similar but is applied to a non-negative measurable function rather than to an integrable function over its domain. The Fubini and Tonelli theorems are usually combined and for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Meagre Set
In the mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ... field of general topology, a meagre set (also called a meager set or a set of first category) is a subset of a topological space that is small or Negligible set, negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms. The meagre subsets of a fixed space form a Sigma-ideal, σ-ideal of subsets; that is, any subset of a meagre set is meagre, and the union (set theory), union of Countable set, countably many meagre sets is meagre. Meagre sets play an important role in the formulation of the notion of Baire space and of the Baire category theorem, which is used in the proof of several fundamental results ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


σ-algebra
In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra") is part of the formalism for defining sets that can be measured. In calculus and analysis, for example, σ-algebras are used to define the concept of sets with area or volume. In probability theory, they are used to define events with a well-defined probability. In this way, σ-algebras help to formalize the notion of ''size''. In formal terms, a σ-algebra (also σ-field, where the σ comes from the German "Summe", meaning "sum") on a set ''X'' is a nonempty collection Σ of subsets of ''X'' closed under complement, countable unions, and countable intersections. The ordered pair (X, \Sigma) is called a measurable space. The set ''X'' is understood to be an ambient space (such as the 2D plane or the set of outcomes when rolling a six-sided die ), and the collection Σ is a choice of subsets declared to have a well-defined size. The closure requirements for σ-algebras are designed to cap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fundamenta Mathematicae
''Fundamenta Mathematicae'' is a peer-reviewed scientific journal of mathematics with a special focus on the foundations of mathematics, concentrating on set theory, mathematical logic, topology and its interactions with algebra, and dynamical systems. The first specialized journal in the field of mathematics, originally it covered only topology, set theory, and foundations of mathematics..... It is published by the Mathematics Institute of the Polish Academy of Sciences. History The journal was conceived by Zygmunt Janiszewski as a means to foster mathematical research in Poland.According to and to the introduction to the 100th volume of the journal (1978, pp=1–2). These two sources cite an article written by Janiszewski himself in 1918 and titled "''On the needs of Mathematics in Poland''". Janiszewski posited that, to achieve its goal, the journal should not compel Polish mathematicians to submit articles written exclusively in Polish, and should be devoted only to a sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decomposable Measure
In mathematics, a decomposable measure (also known as a strictly localizable measure) is a measure that is a disjoint union of finite measures. This is a generalization of σ-finite measures, which are the same as those that are a disjoint union of '' countably many'' finite measures. There are several theorems in measure theory such as the Radon–Nikodym theorem that are not true for arbitrary measures but are true for σ-finite measures. Several such theorems remain true for the more general class of decomposable measures. This extra generality is not used much as most decomposable measures that occur in practice are σ-finite. Examples * Counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinit ... on an uncountable measure space with all subsets measurable is a decomposa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counting Measure
In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity \infty if the subset is infinite. The counting measure can be defined on any measurable space (that is, any set X along with a sigma-algebra) but is mostly used on countable sets. In formal notation, we can turn any set X into a measurable space by taking the power set of X as the sigma-algebra \Sigma; that is, all subsets of X are measurable sets. Then the counting measure \mu on this measurable space (X,\Sigma) is the positive measure \Sigma \to ,+\infty/math> defined by \mu(A) = \begin \vert A \vert & \text A \text\\ +\infty & \text A \text \end for all A\in\Sigma, where \vert A\vert denotes the cardinality of the set A. The counting measure on (X,\Sigma) is σ-finite if and only if the space X is countable In mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Counterexamples
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and disproof of, the universal quantification "all students are lazy." In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjectures to produce provable theorems. It is sometimes said that mathematical development consists primarily in finding (and proving) theorems and counterexamples. Rectangle example Suppose that a mathematician is studying geometry and shapes, and she wishes to prove certain theorems about them. She conjectures that "All rect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it coincides with the standard measure of length, area, or volume. In general, it is also called '-dimensional volume, '-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by \lambda(A). Henri Lebesgue described this measure in the year 1901 which, a year after, was followed up by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Measure Space
In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (''X'', Î£, ''μ'') is complete if and only if :S \subseteq N \in \Sigma \mbox \mu(N) = 0\ \Rightarrow\ S \in \Sigma. Motivation The need to consider questions of completeness can be illustrated by considering the problem of product spaces. Suppose that we have already constructed Lebesgue measure on the real line: denote this measure space by (\R, B, \lambda). We now wish to construct some two-dimensional Lebesgue measure \lambda^2 on the plane \R^2 as a product measure. Naively, we would take the -algebra on \R^2 to be B \otimes B, the smallest -algebra containing all measurable "rectangles" A_1 \times A_2 for A_1, A_2 \in B. While this approach does define a measure space, it has a flaw. Since every singleton set has one-dimensional Lebesgue measure zero, \la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]