Forecast Bias
A forecast bias occurs when there are consistent differences between actual outcomes and previously generated forecasts of those quantities; that is: forecasts may have a general tendency to be too high or too low. A normal property of a good forecast is that it is not biased.APICS Dictionary 12th Edition, American Production and Inventory Control Society. Available for download a As a quantitative measure , the "forecast bias" can be specified as a probabilistic or statistical property of the forecast error. A typical measure of bias of forecasting procedure is the arithmetic mean or expected value of the forecast errors, but other measures of bias are possible. For example, a median-unbiased forecast would be one where half of the forecasts are too low and half too high: see Bias of an estimator. In contexts where forecasts are being produced on a repetitive basis, the performance of the forecasting system may be monitored using a tracking signal, which provides an automatically ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forecast Error
In statistics, a forecast error is the difference between the actual or real and the predicted or forecast value of a time series or any other phenomenon of interest. Since the forecast error is derived from the same scale of data, comparisons between the forecast errors of different series can only be made when the series are on the same scale. In simple cases, a forecast is compared with an outcome at a single time-point and a summary of forecast errors is constructed over a collection of such time-points. Here the forecast may be assessed using the difference or using a proportional error. By convention, the error is defined using the value of the outcome ''minus'' the value of the forecast. In other cases, a forecast may consist of predicted values over a number of lead-times; in this case an assessment of forecast error may need to consider more general ways of assessing the match between the time-profiles of the forecast and the outcome. If a main application of the forecas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bias (statistics)
Statistical bias is a systematic tendency which causes differences between results and facts. The bias exists in numbers of the process of data analysis, including the source of the data, the estimator chosen, and the ways the data was analyzed. Bias may have a serious impact on results, for example, to investigate people's buying habits. If the sample size is not large enough, the results may not be representative of the buying habits of all the people. That is, there may be discrepancies between the survey results and the actual results. Therefore, understanding the source of statistical bias can help to assess whether the observed results are close to the real results. Bias can be differentiated from other mistakes such as accuracy (instrument failure/inadequacy), lack of data, or mistakes in transcription (typos). Bias implies that the data selection may have been skewed by the collection criteria. Bias does not preclude the existence of any other mistakes. One may have a poo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetic Mean
In mathematics and statistics, the arithmetic mean ( ) or arithmetic average, or just the ''mean'' or the ''average'' (when the context is clear), is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results of an experiment or an observational study, or frequently a set of results from a survey. The term "arithmetic mean" is preferred in some contexts in mathematics and statistics, because it helps distinguish it from other means, such as the geometric mean and the harmonic mean. In addition to mathematics and statistics, the arithmetic mean is used frequently in many diverse fields such as economics, anthropology and history, and it is used in almost every academic field to some extent. For example, per capita income is the arithmetic average income of a nation's population. While the arithmetic mean is often used to report central tendencies, it is not a robust statistic, meaning that it is greatly influe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Expected Value
In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with also often stylized as or \mathbb. History The idea of the expected value originated in the middle of the 17th century from the study of the so-called problem of points, which seeks to divide the stakes ''in a fair way'' between two players, who have to end th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bias Of An Estimator
In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called ''unbiased''. In statistics, "bias" is an property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more. All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimato ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tracking Signal
In statistics and management science, a tracking signal monitors any forecasts that have been made in comparison with actuals, and warns when there are unexpected departures of the outcomes from the forecasts. Forecasts can relate to sales, inventory, or anything pertaining to an organization's future demand. The tracking signal is a simple indicator that forecast bias is present in the forecast model. It is most often used when the validity of the forecasting model might be in doubt. Definition One form of tracking signal is the ratio of the cumulative sum of forecast errors (the deviations between the estimated forecasts and the actual values) to the mean absolute deviation. The formula for this tracking signal is: \text = \frac where ''at'' is the actual value of the quantity being forecast, and ''ft'' is the forecast. MAD is the mean absolute deviation. The formula for the MAD is: \text = \frac where ''n'' is the number of periods. Plugging this in, the entire formul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Calculating Demand Forecast Accuracy
Demand forecasting is known as the process of making future estimations in relation to customer demand over a specific period. Generally, demand forecasting will consider historical data and other analytical information to produce the most accurate predictions. More specifically, the methods of demand forecasting entails using predictive analytics of historical data to understand and predict customer demand in order to understand key economic conditions and assist in making crucial supply decisions to optimise business profitability. Demand forecasting methods are divided into two major categories, qualitative and quantitative methods. Qualitative methods are based on expert opinion and information gathered from the field. It is mostly used in situations when there is minimal data available to analyse. For example, when a business or product is newly being introduced to the market. Quantitative methods however, use data, and analytical tools in order to create predictions. Demand f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consensus Forecast
Used in a number of sciences, ranging from econometrics to meteorology, consensus forecasts are predictions of the future that are created by combining together several separate forecasts which have often been created using different methodologies. Also known as ''combining forecasts'', ''forecast averaging'' or ''model averaging'' (in econometrics and statistics) and ''committee machines'', ''ensemble averaging'' or ''expert aggregation'' (in machine learning). Applications can range from forecasting the weather to predicting the annual Gross Domestic Product of a country or the number of cars a company or an individual dealer is likely to sell in a year. While forecasts are often made for future values of a time series, they can also be for one-off events such as the outcome of a presidential election or a football match. Background Forecasting plays a key role in any organisation's planning process as it provides insight into uncertainty. Through simulation, one will be able to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Optimism Bias
Optimism bias (or the optimistic bias) is a cognitive bias that causes someone to believe that they themselves are less likely to experience a negative event. It is also known as unrealistic optimism or comparative optimism. Optimism bias is common and transcends gender, ethnicity, nationality, and age.O’Sullivan, Owen P. (2015)The neural basis of always looking on the bright side.''Dialogues in Philosophy, Mental and Neuro Sciences'', 8(1):11–15. Optimistic biases are even reported in non-human animals such as rats and birds. However, autistic people are less susceptible to optimistic biases. Four factors can cause a person to be optimistically biased: their desired end state, their cognitive mechanisms, the information they have about themselves versus others, and overall mood. The optimistic bias is seen in a number of situations. For example: people believing that they are less at risk of being a crime victim, smokers believing that they are less likely to contract lung can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Demand Forecasting
Demand forecasting is known as the process of making future estimations in relation to customer demand over a specific period. Generally, demand forecasting will consider historical data and other analytical information to produce the most accurate predictions. More specifically, the methods of demand forecasting entails using predictive analytics of historical data to understand and predict customer demand in order to understand key economic conditions and assist in making crucial supply decisions to optimise business profitability. Demand forecasting methods are divided into two major categories, qualitative and quantitative methods. Qualitative methods are based on expert opinion and information gathered from the field. It is mostly used in situations when there is minimal data available to analyse. For example, when a business or product is newly being introduced to the market. Quantitative methods however, use data, and analytical tools in order to create predictions. Demand f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponential Growth Bias
Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). If the constant of proportionality is negative, then the quantity decreases over time, and is said to be undergoing exponential decay instead. In the case of a discrete domain of definition with equal intervals, it is also called geometric growth or geometric decay since the function values form a geometric progression. The formula for exponential growth of a variable at the growth rate , as time goes on in discrete intervals (that is, at integer times 0, 1, 2, 3, ...), is x_t = x_0(1+r)^t where is the value of at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forecast Skill
In the fields of forecasting and prediction, forecast skill or prediction skill is any measure of the accuracy and/or degree of association of prediction to an observation or estimate of the actual value of what is being predicted (formally, the predictand); it may be quantified as a skill score. In meteorology, more specifically in weather forecasting, skill measures the superiority of a forecast over a simple historical baseline of past observations. The same forecast methodology can result in different skill scores at different places, or even in the same place for different seasons (e.g., spring weather might be driven by erratic local conditions, whereas winter cold snaps might correlate with observable polar winds). Weather forecast skill is often presented in the form of seasonal geographical maps. Forecast skill for single-value forecasts (i.e., time series of a scalar quantity) is commonly represented in terms of metrics such as correlation, root mean squared error, mea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |