HOME
*





Fischer Group Fi22
In the area of modern algebra known as group theory, the Fischer group ''Fi22'' is a sporadic simple group of order :   217395271113 : = 64561751654400 : ≈ 6. History ''Fi22'' is one of the 26 sporadic groups and is the smallest of the three Fischer groups. It was introduced by while investigating 3-transposition groups. The outer automorphism group has order 2, and the Schur multiplier has order 6. Representations The Fischer group Fi22 has a rank 3 action on a graph of 3510 vertices corresponding to its 3-transpositions, with point stabilizer the double cover of the group PSU6(2). It also has two rank 3 actions on 14080 points, exchanged by an outer automorphism. Fi22 has an irreducible real representation of dimension 78. Reducing an integral form of this mod 3 gives a representation of Fi22 over the field with 3 elements, whose quotient by the 1-dimensional space of fixed vectors is a 77-dimensional irreducible representation. The perfect tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sporadic Simple Group
In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The classification theorem states that the list of finite simple groups consists of 18 countably infinite plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. They are also known as the sporadic simple groups, or the sporadic finite groups. Because it is not strictly a group of Lie type, the Tits group is sometimes regarded as a sporadic group, in which case there would be 27 sporadic groups. The monster group is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted to exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (group Theory)
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 has th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


3-transposition Group
In mathematical group theory, a 3-transposition group is a group (mathematics), group generated by a conjugacy class of involution (mathematics), involutions, called the 3-transpositions, such that the product of any two involutions from the conjugacy class has order (group theory), order at most 3. They were first studied by who discovered the three Fischer groups as examples of 3-transposition groups. History first studied 3-transposition groups in the special case when the product of any two distinct 3-transpositions has order 3. He showed that a finite group with this property is solvable, and has a (nilpotent) 3-group of index 2. used these groups to construct examples of non-abelian CH-quasigroups and to describe the structure of commutative Moufang loops of exponent 3. Fischer's theorem Suppose that ''G'' is a group that is generated by a conjugacy class ''D'' of 3-transpositions and such that the p-core, 2 and 3 cores ''O''2(''G'') and ''O''3(''G'') are both contained ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outer Automorphism Group
In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a trivial center, then is said to be complete. An automorphism of a group which is not inner is called an outer automorphism. The cosets of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the alternating group, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the symmetric group, , conjugation by any odd permutation is an oute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schur Multiplier
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \operatorname(G) of a finite group ''G'' is a finite abelian group whose exponent divides the order of ''G''. If a Sylow ''p''-subgroup of ''G'' is cyclic for some ''p'', then the order of \operatorname(G) is not divisible by ''p''. In particular, if all Sylow ''p''-subgroups of ''G'' are cyclic, then \operatorname(G) is trivial. For instance, the Schur multiplier of the nonabelian group of order 6 is the trivial group since every Sylow subgroup is cyclic. The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order 64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion group is trivial, but the Schur multiplier of dihedral 2-groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank 3 Action
Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * Hierarchy of the Catholic Church * Military rank * Police ranks of the United States * Ranking member, S politicsthe most senior member of a committee from the minority party, and thus second-most senior member of a committee * Imperial, royal and noble ranks Level or position in society *Social class *Social position *Social status Places * Rank, Iran, a village * Rank, Nepal, a village development committee People * Rank (surname), a list of people with the name Arts, entertainment, and media Music * ''Rank'' (album), a live album by the Smiths * "Rank", a song by Artwork from '' A Bugged Out Mix'' Other arts, entertainment, and media * Rank (chess), a row of the chessboard * ''Rank'' (film), a short film directed by David Yates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Baby Monster Group
In the area of modern algebra known as group theory, the baby monster group ''B'' (or, more simply, the baby monster) is a sporadic simple group of order :   241313567211131719233147 : = 4154781481226426191177580544000000 : = 4,154,781,481,226,426,191,177,580,544,000,000 : ≈ 4. ''B'' is one of the 26 sporadic groups and has the second highest order of these, with the highest order being that of the monster group. The double cover of the baby monster is the centralizer of an element of order 2 in the monster group. The outer automorphism group is trivial and the Schur multiplier has order 2. History The existence of this group was suggested by Bernd Fischer in unpublished work from the early 1970s during his investigation of -transposition groups: groups generated by a class of transpositions such that the product of any two elements has order at most 4. He investigated its properties and computed its character table. The first construction of the baby monst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monstrous Moonshine
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular, the ''j'' function. The term was coined by John Conway and Simon P. Norton in 1979. The monstrous moonshine is now known to be underlain by a vertex operator algebra called the moonshine module (or monster vertex algebra) constructed by Igor Frenkel, James Lepowsky, and Arne Meurman in 1988, which has the monster group as its group of symmetries. This vertex operator algebra is commonly interpreted as a structure underlying a two-dimensional conformal field theory, allowing physics to form a bridge between two mathematical areas. The conjectures made by Conway and Norton were proven by Richard Borcherds for the moonshine module in 1992 using the no-ghost theorem from string theory and the theory of vertex operator algebras and generalized Kac–Moody algebras. History In 1978, John McKay found that the first few ter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dedekind Eta Function
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory. Definition For any complex number with , let ; then the eta function is defined by, :\eta(\tau) = e^\frac \prod_^\infty \left(1-e^\right) = q^\frac \prod_^\infty \left(1 - q^n\right) . Raising the eta equation to the 24th power and multiplying by gives :\Delta(\tau)=(2\pi)^\eta^(\tau) where is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, such as in the 24-dimensional Leech lattice. The eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it. The eta function satisfies the functional equations :\begin \eta(\tau+1) &=e^\frac\eta(\tau),\\ \eta\left(-\frac\right) &= \sqrt\, \eta(\tau).\, \end In the second equation the bra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tits Group
In group theory, the Tits group 2''F''4(2)′, named for Jacques Tits (), is a finite simple group of order :   211 · 33 · 52 · 13 = 17,971,200. It is sometimes considered a 27th sporadic group. History and properties The Ree groups 2''F''4(22''n''+1) were constructed by , who showed that they are simple if ''n'' ≥ 1. The first member of this series 2''F''4(2) is not simple. It was studied by who showed that it is almost simple, its derived subgroup 2''F''4(2)′ of index 2 being a new simple group, now called the Tits group. The group 2''F''4(2) is a group of Lie type and has a BN pair, but the Tits group itself does not have a BN pair. Because the Tits group is not strictly a group of Lie type, it is sometimes regarded as a 27th sporadic group.For instance, by the ATLAS of Finite Groups and itweb-based descendant/ref> The Schur multiplier of the Tits group is trivial and its outer automorphism group has orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]