Finitely-generated Abelian Group
In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n_s. In this case, we say that the set \ is a ''generating set'' of G or that x_1,\dots, x_s ''generate'' G. Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified. Examples * The integers, \left(\mathbb,+\right), are a finitely generated abelian group. * The integers modulo n, \left(\mathbb/n\mathbb,+\right), are a finite (hence finitely generated) abelian group. * Any direct sum of finitely many finitely generated abelian groups is again a finitely generated abelian group. * Every lattice forms a finitely generated free abelian group. There are no other examples (up to isomorphism). In particular, the group \left(\mathbb,+\right) of rational numbers is not finitely generated ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, all else is the work of man").The English translation is from Gray. In a footnote, Gray attributes the German quote to "Weber 1891/92, 19, quoting from a lecture of Kronecker's of 1886". Weber, Heinrich L. 1891–1892Kronecker ''Jahresbericht der Deutschen Mathematiker-Vereinigung'' 2:5-23. (The quote is on p. 19.) Kronecker was a student and lifelong friend of . Biography Leopold Kronecker was born ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
László Fuchs
László Fuchs (born June 24, 1924) is a Hungarian-born American mathematician, the Evelyn and John G. Phillips Distinguished Professor Emeritus in Mathematics at Tulane University.Faculty profile , Tulane Univ., retrieved 2012-02-19. He is known for his research and textbooks in and ... Biography Fuchs was born o ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smith Normal Form
In mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named after the Irish mathematician Henry John Stephen Smith. Definition Let ''A'' be a nonzero ''m''×''n'' matrix over a principal ideal domain ''R''. There exist invertible m \times m and n \times n-matrices ''S, T'' (with coefficients in ''R'') such that the product ''S A T'' is \begin \alpha_1 & 0 & 0 & & \cdots & & 0 \\ 0 & \alpha_2 & 0 & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finitely Presented Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then without knowing the value of ''n'', we can determine that the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if ''n'' is a natural number less than 105, then 23 is the only possible value of ''n''. The earliest known statement of the theorem is by the Chinese mathematician Sun-tzu in the '' Sun-tzu Suan-ching'' in the 3rd century CE. The Chinese remainder theorem is widely used for computing with lar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Invariant Factor
The invariant factors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R is a PID and M a finitely generated R-module, then :M\cong R^r\oplus R/(a_1)\oplus R/(a_2)\oplus\cdots\oplus R/(a_m) for some integer r\geq0 and a (possibly empty) list of nonzero elements a_1,\ldots,a_m\in R for which a_1 \mid a_2 \mid \cdots \mid a_m. The nonnegative integer r is called the ''free rank'' or ''Betti number'' of the module M, while a_1,\ldots,a_m are the ''invariant factors'' of M and are unique up to associatedness. The invariant factors of a matrix over a PID occur in the Smith normal form and provide a means of computing the structure of a module from a set of generators and relations. See also * Elementary divisors In algebra, the elementary divisors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero. General Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Summand
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, we define the sum (a, b) + (c, d) to be (a + c, b + d); in other words addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. We can also form direct sums with any finite number of summands, for example A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torsion-free Abelian Group
In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Definitions An abelian group \langle G, + ,0\rangle is said to be torsion-free if no element other than the identity e is of finite order. Explicitly, for any n > 0, the only element x \in G for which nx = 0 is x = 0. A natural example of a torsion-free group is \langle \mathbb Z,+,0\rangle , as only the integer 0 can be added to itself finitely many times to reach 0. More generally, the free abelian group \mathbb Z^r is torsion-free for any r \in \mathbb N. An important step in the proof of the classification of finitely generated abelia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torsion Subgroup
In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group (or periodic group) if every element of ''A'' has finite order and is called torsion-free if every element of ''A'' except the identity is of infinite order. The proof that ''AT'' is closed under the group operation relies on the commutativity of the operation (see examples section). If ''A'' is abelian, then the torsion subgroup ''T'' is a fully characteristic subgroup of ''A'' and the factor group ''A''/''T'' is torsion-free. There is a covariant functor from the category of abelian groups to the category of torsion groups that sends every group to its torsion subgroup and every homomorphism to its restriction to the torsion subgroup. There is another covariant functor from the category of abelian groups to the category of torsion-free gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |