Factored Language Model
   HOME
*





Factored Language Model
The factored language model (FLM) is an extension of a conventional language model introduced by Jeff Bilmes and Katrin Kirchoff in 2003. In an FLM, each word is viewed as a vector of ''k'' factors: w_i = \. An FLM provides the probabilistic model P(f, f_1, ..., f_N) where the prediction of a factor f is based on N parents \. For example, if w represents a word token and t represents a Part of speech tag for English, the expression P(w_i, w_, w_, t_) gives a model for predicting current word token based on a traditional Ngram model as well as the Part of speech tag of the previous word. A major advantage of factored language models is that they allow users to specify linguistic knowledge such as the relationship between word tokens and Part of speech in English, or morphological information (stems, root, etc.) in Arabic. Like N-gram In the fields of computational linguistics and probability, an ''n''-gram (sometimes also called Q-gram) is a contiguous sequence of ''n'' it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Language Model
A language model is a probability distribution over sequences of words. Given any sequence of words of length , a language model assigns a probability P(w_1,\ldots,w_m) to the whole sequence. Language models generate probabilities by training on text corpora In linguistics, a corpus (plural ''corpora'') or text corpus is a language resource consisting of a large and structured set of texts (nowadays usually electronically stored and processed). In corpus linguistics, they are used to do statistical ... in one or many languages. Given that languages can be used to express an infinite variety of valid sentences (the property of digital infinity), language modeling faces the problem of assigning non-zero probabilities to linguistically valid sequences that may never be encountered in the training data. Several modelling approaches have been designed to surmount this problem, such as applying the Markov assumption or using neural architectures such as recurrent neural networks or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Part Of Speech
In grammar, a part of speech or part-of-speech (abbreviated as POS or PoS, also known as word class or grammatical category) is a category of words (or, more generally, of lexical items) that have similar grammatical properties. Words that are assigned to the same part of speech generally display similar syntactic behavior (they play similar roles within the grammatical structure of sentences), sometimes similar morphological behavior in that they undergo inflection for similar properties and even similar semantic behavior. Commonly listed English parts of speech are noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection, numeral, article, and determiner. Other terms than ''part of speech''—particularly in modern linguistic classifications, which often make more precise distinctions than the traditional scheme does—include word class, lexical class, and lexical category. Some authors restrict the term ''lexical category'' to refer only to a particular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ngram
In the fields of computational linguistics and probability, an ''n''-gram (sometimes also called Q-gram) is a contiguous sequence of ''n'' items from a given sample of text or speech. The items can be phonemes, syllables, letters, words or base pairs according to the application. The ''n''-grams typically are collected from a text or speech corpus. When the items are words, -grams may also be called ''shingles''. Using Latin numerical prefixes, an ''n''-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size 3 is a "trigram". English cardinal numbers are sometimes used, e.g., "four-gram", "five-gram", and so on. In computational biology, a polymer or oligomer of a known size is called a ''k''-mer instead of an ''n''-gram, with specific names using Greek numerical prefixes such as "monomer", "dimer", "trimer", "tetramer", "pentamer", etc., or English cardinal numbers, "one-mer", "two-mer", "three-mer", etc. Applications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-gram
In the fields of computational linguistics and probability, an ''n''-gram (sometimes also called Q-gram) is a contiguous sequence of ''n'' items from a given sample of text or speech. The items can be phonemes, syllables, letters, words or base pairs according to the application. The ''n''-grams typically are collected from a text or speech corpus. When the items are words, -grams may also be called ''shingles''. Using Latin numerical prefixes, an ''n''-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size 3 is a "trigram". English cardinal numbers are sometimes used, e.g., "four-gram", "five-gram", and so on. In computational biology, a polymer or oligomer of a known size is called a ''k''-mer instead of an ''n''-gram, with specific names using Greek numerical prefixes such as "monomer", "dimer", "trimer", "tetramer", "pentamer", etc., or English cardinal numbers, "one-mer", "two-mer", "three-mer", etc. Applications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Language Modeling
A language model is a probability distribution over sequences of words. Given any sequence of words of length , a language model assigns a probability P(w_1,\ldots,w_m) to the whole sequence. Language models generate probabilities by training on text corpora in one or many languages. Given that languages can be used to express an infinite variety of valid sentences (the property of digital infinity), language modeling faces the problem of assigning non-zero probabilities to linguistically valid sequences that may never be encountered in the training data. Several modelling approaches have been designed to surmount this problem, such as applying the Markov assumption or using neural architectures such as recurrent neural networks or transformers. Language models are useful for a variety of problems in computational linguistics; from initial applications in speech recognition to ensure nonsensical (i.e. low-probability) word sequences are not predicted, to wider use in machine t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Natural Language Processing
Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves. Challenges in natural language processing frequently involve speech recognition, natural-language understanding, and natural-language generation. History Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence, tho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]