Factor Theorem
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f(x) is a polynomial, then x - a is a factor of f(x) if and only if f (a) = 0 (that is, a is a root of the polynomial). The theorem is a special case of the polynomial remainder theorem. The theorem results from basic properties of addition and multiplication. It follows that the theorem holds also when the coefficients and the element a belong to any commutative ring, and not just a field. In particular, since multivariate polynomials can be viewed as univariate in one of their variables, the following generalization holds : If f(X_1,\ldots,X_n) and g(X_2, \ldots,X_n) are multivariate polynomials and g is independent of X_1, then X_1 - g(X_2, \ldots,X_n) is a factor of f(X_1,\ldots,X_n) if and only if f(g(X_2, \ldots,X_n),X_2, \ldots,X_n) is the zero polynomial. Factorization of polynomials Two problems where the factor theorem is commonly applied are those of factoring a polyn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Root
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Remainder Theorem
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) is an application of Euclidean division of polynomials. It states that, for every number r, any polynomial f(x) is the sum of f(r) and the product of x-r and a polynomial in x of degree one less than the degree of f. In particular, f(r) is the remainder of the Euclidean division of f(x) by x-r, and x-r is a divisor of f(x) if and only if f(r)=0, a property known as the factor theorem. Examples Example 1 Let f(x) = x^3 - 12x^2 - 42. Polynomial division of f(x) by (x-3) gives the quotient x^2 - 9x - 27 and the remainder -123. By the polynomial remainder theorem, f(3)=-123. Example 2 Proof that the polynomial remainder theorem holds for an arbitrary second degree polynomial f(x) = ax^2 + bx + c by using algebraic manipulation: \begin f(x)-f(r) &= ax^2+bx+c-(ar^2+br+c)\\ &= a(x^2-r^2)+ b(x-r)\\ &= a(x-r)(x+r)+b(x-r)\\ &= (x-r)(ax +ar+ b) \end So, f(x) = (x - r)(ax + ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Commutative rings appear in the following chain of subclass (set theory), class inclusions: Definition and first examples Definition A ''ring'' is a Set (mathematics), set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (algebra)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straightedge. Galois theory, devoted to understanding the symmetries of field extensions, provides an elegant proof of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Root Theorem
In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or theorem) states a constraint on rational solutions of a polynomial equation a_nx^n+a_x^+\cdots+a_0 = 0 with integer coefficients a_i\in\mathbb and a_0,a_n \neq 0. Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution written in lowest terms (that is, and are relatively prime), satisfies: * is an integer factor of the constant term , and * is an integer factor of the leading coefficient . The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is . Application The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Long Division
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials ''A'' (the ''dividend'') and ''B'' (the ''divisor'') produces, if ''B'' is not zero, a '' quotient'' ''Q'' and a ''remainder'' ''R'' such that :''A'' = ''BQ'' + ''R'', and either ''R'' = 0 or the degree of ''R'' is lower than the degree of ''B''. These conditions uniquely define ''Q'' and ''R'', which means that ''Q'' and ''R'' do not depend o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Synthetic Division
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule), but the method can be generalized to division by any polynomial. The advantages of synthetic division are that it allows one to calculate without writing variables, it uses few calculations, and it takes significantly less space on paper than long division. Also, the subtractions in long division are converted to additions by switching the signs at the very beginning, helping to prevent sign errors. Regular synthetic division The first example is synthetic division with only a monic linear denominator x-a. :\frac The numerator can be written as p(x) = x^3 - 12x^2 + 0x - 42 . The zero of the denominator g(x) is 3. The coefficients of p(x) are arranged as follows, with the zero of g(x) on the left: :\begin \begin \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Degree
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see Order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x - 9, which can also be written as 7x^2y^3 + 4x^1y^0 - 9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2 - (x-1)^2, one can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Formula
In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions. Given a general quadratic equation of the form , with representing an unknown, and coefficients , , and representing known real number, real or complex number, complex numbers with , the values of satisfying the equation, called the Zero of a function, ''roots'' or ''zeros'', can be found using the quadratic formula, x = \frac, where the plus–minus sign, plus–minus symbol "" indicates that the equation has two roots. Written separately, these are: x_1 = \frac, \qquad x_2 = \frac. The quantity is known as the discriminant of the quadratic equation. If the coefficients , , and are real numbers then when , the equation has two distinct real number, real roots; when , the equation has one repeated root, repeated real root; and when , the equation h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Factorization
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems. The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems: When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few minutes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Division Of Polynomials
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant. The similarity between the integer GCD and the polynomial GCD allows extending to univariate polynomials all the properties that may be deduced from the Euclidean algorithm and Euclidean division. Moreover, the polynomial GCD has specific properties that make it a fundamental notion in various areas of algebra. Typically, the roots of the GCD of two polynomials are the common roots of the two polynomials, and this provides information on the roots without comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |