Extreme Helium Star
   HOME
*





Extreme Helium Star
An extreme helium star (abbreviated EHe) is a low-mass supergiant that is almost devoid of hydrogen, the most common chemical element of the Universe. Since there are no known conditions where stars devoid of hydrogen can be formed from molecular clouds, it is theorized that they are the product of the mergers of helium-core and carbon-oxygen core white dwarfs. Properties Extreme helium stars form a sub-group within the broader category of hydrogen-deficient stars. The latter includes cool carbon stars like R Coronae Borealis variables, helium-rich spectral class O or B stars, population I Wolf–Rayet stars, AM CVn stars, white dwarfs of spectral type WC, and transition stars like PG 1159. The first known extreme helium star, HD 124448, was discovered in 1942 by Daniel M. Popper at the McDonald Observatory near Fort Davis, Texas, United States. This star displayed no lines of hydrogen in its spectrum, but strong helium lines as well as the presence of carbon and oxygen. The se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supergiant
Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K. Definition The title supergiant, as applied to a star, does not have a single concrete definition. The term ''giant star'' was first coined by Hertzsprung when it became apparent that the majority of stars fell into two distinct regions of the Hertzsprung–Russell diagram. One region contained larger and more luminous stars of spectral types A to M and received the name ''giant''. Subsequently, as they lacked any measurable parallax, it became apparent that some of these stars were significantly larger and more luminous than the bulk, and the term ''super-giant'' arose, quickly adopted as ''supergiant''. Spectral luminosity class Supergiant stars can be identified on the basis of thei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HD 124448
HD 124448, also called Popper's Star and V821 Centauri, is an extreme helium star in the Centaurus constellation. Discovered by astronomer Daniel Popper, this star has a spectral classification In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the ... of B2-B3 and a radius of . References Centaurus B-type stars PV Telescopii variables 124448 Centauri, V821 069619 {{supergiant-star-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chandrasekhar Limit
The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compared to main sequence stars, which resist collapse through thermal pressure. The Chandrasekhar limit is the mass above which electron degeneracy pressure in the star's core is insufficient to balance the star's own gravitational self-attraction. Consequently, a white dwarf with a mass greater than the limit is subject to further gravitational collapse, evolving into a different type of stellar remnant, such as a neutron star or black hole. Those with masses up to the limit remain stable as white dwarfs.Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, ''Dark Matter, Dark Energy: The Dark Side of the Universe'', Guidebook Part 2 page 44, Accessed Oct. 7, 2013, "...Chandrasekhar limit: The maximum mass of a white dwarf star, about 1.4 t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Radiation
Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as waves similar to electromagnetic waves but the gravitational equivalent. Gravitational waves were later predicted in 1916 by Albert Einstein on the basis of his general theory of relativity as ripples in spacetime. Later he refused to accept gravitational waves. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed)showing one of the ways the methods of Newtonian physics are unable to explain phe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Star
In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter. Compact stars are often the endpoints of stellar evolution and, in this respect, are also called stellar remnants. The state and type of a stellar remnant depends primarily on the mass of the star that it formed from. The ambiguous term ''compact star'' is often used when the exact nature of the star is not known, but evidence suggests that it has a very small radius compared to ordinary stars. A compact star that is not a black hole may be called a degenerate star. In June 2020, astronomers reported narrowing down the source of Fast Radio Bursts (FRBs), which may now plausibly include "compact-object mergers and magnetars arising ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star. Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance of atoms at the core becomes helium, stars like the Sun begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing throug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monthly Notices Of The Royal Astronomical Society
''Monthly Notices of the Royal Astronomical Society'' (MNRAS) is a peer-reviewed scientific journal covering research in astronomy and astrophysics. It has been in continuous existence since 1827 and publishes letters and papers reporting original research in relevant fields. Despite the name, the journal is no longer monthly, nor does it carry the notices of the Royal Astronomical Society. History The first issue of MNRAS was published on 9 February 1827 as ''Monthly Notices of the Astronomical Society of London'' and it has been in continuous publication ever since. It took its current name from the second volume, after the Astronomical Society of London became the Royal Astronomical Society (RAS). Until 1960 it carried the monthly notices of the RAS, at which time these were transferred to the newly established ''Quarterly Journal of the Royal Astronomical Society'' (1960–1996) and then to its successor journal ''Astronomy & Geophysics'' (since 1997). Until 1965, MNRAS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PV Telescopii Variable
PV Telescopii variable is a type of variable star that is established in the ''General Catalogue of Variable Stars'' with the acronym PVTEL. This class of variables are defined as "helium supergiant Bp stars with weak hydrogen lines and enhanced lines of He and C". That is, the hydrogen spectral lines of these stars are weaker than normal for a star of stellar class B, while the lines of helium and carbon are stronger. They are a type of extreme helium star. The prototype for this category of variable is PV Telescopii, which undergoes small but complex luminosity variations and radial velocity fluctuations. The PV Tel stars are extremely hydrogen-deficient compared to other B-class stars and vary in luminosity on time scales ranging from a few hours to several years. As of 2008, there are twelve confirmed PV Tel variables in the ''General Catalogue of Variable Stars''. PV Telescopii variables are subdivided into three distinct types on the basis of spectral type In astronom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PV Telescopii
PV Telescopii, also known as HD 168476, is a variable star in the southern constellation of Telescopium. It is too dim to be visible to the naked eye, having an apparent visual magnitude that has been measured varying from 9.24 down to 9.40. The star is the prototype of a class of objects called PV Telescopii variables. It is located at an estimated distance of approximately from the Sun, but is drifting closer with a radial velocity of −169 km/s. This is an extreme helium star that shows a highly-processed atmosphere. It is a blue-white hued B-type supergiant star with a peculiar spectrum that has "weak hydrogen lines and enhanced lines of He and C". This object may be a late thermal pulse post- AGB star or the result of a merger of two white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fort Davis, Texas
Fort Davis is an unincorporated community and census-designated place (CDP) in Jeff Davis County, Texas, United States. The population was 1,201 at the 2010 census, up from 1,050 at the 2000 census. It is the county seat of Jeff Davis County. History It was the site of Fort Davis, established in 1854 on the San Antonio–El Paso Road through west Texas and named after Jefferson Davis, who was then the Secretary of War under President Franklin Pierce. It was reestablished in 1867 following the civil war. Geography Fort Davis is located in southeastern Jeff Davis County at the southeast foot of the Davis Mountains. Texas State Highway 17 (State Street) passes through the center of town, leading northeast to Interstate 10 at Balmorhea and southwest to Marfa. Texas State Highway 118 joins Highway 17 through the center of Fort Davis, but leads northwest through the Davis Mountains to I-10 and southeast to Alpine. According to the United States Census Bureau, the CDP has a total a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

McDonald Observatory
McDonald Observatory is an astronomical observatory located near unincorporated community of Fort Davis in Jeff Davis County, Texas, United States. The facility is located on Mount Locke in the Davis Mountains of West Texas, with additional facilities on Mount Fowlkes, approximately to the northeast. The observatory is part of The University of Texas at Austin. It is an organized research unit of the College of Natural Sciences. The observatory produces ''StarDate'', a daily syndicated radio program consisting of short segments related to astronomy that airs on both National Public Radio and commercial radio stations — about 400 affiliates in all. History McDonald Observatory was originally endowed by the Texas banker William Johnson McDonald (1844–1926), who left about $1 million — the bulk of his fortune — to The University of Texas at Austin to endow an astronomical observatory. The provision of the will was challenged by McDonald's relatives, but after a long ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel M
Daniel is a masculine given name and a surname of Hebrew origin. It means "God is my judge"Hanks, Hardcastle and Hodges, ''Oxford Dictionary of First Names'', Oxford University Press, 2nd edition, , p. 68. (cf. Gabriel—"God is my strength"), and derives from two early biblical figures, primary among them Daniel from the Book of Daniel. It is a common given name for males, and is also used as a surname. It is also the basis for various derived given names and surnames. Background The name evolved into over 100 different spellings in countries around the world. Nicknames (Dan, Danny) are common in both English and Hebrew; "Dan" may also be a complete given name rather than a nickname. The name "Daniil" (Даниил) is common in Russia. Feminine versions (Danielle, Danièle, Daniela, Daniella, Dani, Danitza) are prevalent as well. It has been particularly well-used in Ireland. The Dutch names "Daan" and "Daniël" are also variations of Daniel. A related surname developed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]