Exotic Affine Space
   HOME
*





Exotic Affine Space
In algebraic geometry, an exotic affine space is a complex algebraic variety that is diffeomorphic to \mathbb^ for some ''n'', but is not isomorphic as an algebraic variety to \mathbb^n. An example of an exotic \mathbb C^3 is the Koras–Russell cubic threefold In algebraic geometry, the Koras–Russell cubic threefolds are smooth affine complex threefolds diffeomorphic to \mathbf^3studied by . They have a hyperbolic action of a one-dimensional torus \mathbf^*with a unique fixed point, such that the qu ..., which is the subset of \mathbb C^4 defined by the polynomial equation :\. References Algebraic varieties Diffeomorphisms {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Algebraic Variety
In algebraic geometry, a complex algebraic variety is an algebraic variety (in the scheme sense or otherwise) over the field of complex numbers. Parshin, Alexei N., and Igor Rostislavovich Shafarevich, eds. ''Algebraic Geometry III: Complex Algebraic Varieties. Algebraic Curves and Their Jacobians.'' Vol. 3. Springer, 1998. Chow's theorem Chow's theorem states that a projective analytic variety; i.e., a closed analytic subvariety of the complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ... \mathbb\mathbf^n is an algebraic variety; it is usually simply referred to as a projective variety. Relation with similar concepts Not every complex analytic variety is algebraic, though. References {{reflist Algebraic varieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two manifolds M and N, a differentiable map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X\to Y is said to be smooth if for all p in X there is a neighbor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Koras–Russell Cubic Threefold
In algebraic geometry, the Koras–Russell cubic threefolds are smooth affine complex threefolds diffeomorphic to \mathbf^3studied by . They have a hyperbolic action of a one-dimensional torus \mathbf^*with a unique fixed point, such that the quotients of the threefold and the tangent space of the fixed point by this action are isomorphic. They were discovered in the process of proving the Linearization Conjecture in dimension 3. A linear action of \mathbf^* on the affine space \mathbf^n is one of the form t*(x_1,\ldots,x_n)=(t^x_1,t^x_2,\ldots,t^x_n), where a_1,\ldots,a_n\in \mathbf and t\in\mathbf^*. The Linearization Conjecture in dimension n says that every algebraic action of \mathbf^* on the complex affine space \mathbf^n is linear in some algebraic coordinates on \mathbf^n. M. Koras and P. Russell made a key step towards the solution in dimension 3, providing a list of threefolds (now called Koras-Russell threefolds) and proving that the Linearization Conjecture for n=3 ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]