Existential Graphs
   HOME
*





Existential Graphs
An existential graph is a type of diagrammatic or visual notation for logical expressions, proposed by Charles Sanders Peirce, who wrote on graphical logic as early as 1882,Peirce, C. S., " n Junctures and Fractures in Logic (editors' title for MS 427 (the new numbering system), Fall–Winter 1882), and "Letter, Peirce to O. H. Mitchell" (L 294, 21 December 1882), '' Writings of Charles S. Peirce'', v. 4, "Junctures" on pp. 391–393 (Googl preview and the letter on pp. 394–399 (Googl preview. See Sowa, John F. (1997), "Matching Logical Structure to Linguistic Structure", ''Studies in the Logic of Charles Sanders Peirce'', Nathan Houser, Don D. Roberts, and James Van Evra, editors, Bloomington and Indianopolis: Indiana University Press, pp. 418–444, see 420, 425, 426, 428. and continued to develop the method until his death in 1914. The graphs Peirce proposed three systems of existential graphs: * ''alpha'', isomorphic to sentential logic and the two-element Boolean algebra; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagram
A diagram is a symbolic representation of information using visualization techniques. Diagrams have been used since prehistoric times on walls of caves, but became more prevalent during the Enlightenment. Sometimes, the technique uses a three-dimensional visualization which is then projected onto a two-dimensional surface. The word ''graph'' is sometimes used as a synonym for diagram. Overview The term "diagram" in its commonly used sense can have a general or specific meaning: * ''visual information device'' : Like the term " illustration", "diagram" is used as a collective term standing for the whole class of technical genres, including graphs, technical drawings and tables. * ''specific kind of visual display'' : This is the genre that shows qualitative data with shapes that are connected by lines, arrows, or other visual links. In science the term is used in both ways. For example, Anderson (1997) stated more generally: "diagrams are pictorial, yet abstract, represen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connective (logic)
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective \lor can be used to join the two atomic formulas P and Q, rendering the complex formula P \lor Q . Common connectives include negation, disjunction, conjunction, and implication. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a classical compositional semantics wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Quantifier
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any" or "for all". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable. It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("", "", or sometimes by "" alone). Universal quantification is distinct from ''existential'' quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain. Quantification in general is covered in the article on quantification (logic). The universal quantifier is encoded as in Unicode, and as \forall in LaTeX and relate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Existential Quantifier
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("" or "" or "). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for ''all'' members of the domain. Some sources use the term existentialization to refer to existential quantification. Basics Consider a formula that states that some natural number multiplied by itself is 25. : 0·0 = 25, or 1·1 = 25, or 2·2 = 25, or 3·3 = 25, ... This would seem to be a logical disjunction because of the repeated use of "or". However, the ellipses make this impossible to integrate and to interpret it as a disjunction in formal logic. Instead, the statement could be rephrased more formally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantification (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order logic, first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope (logic), scope is called a quantified formula. A quantified formula must contain a Free variables and bound variables, bound variable and a subformula specifying a property of the referent of that variable. The mostly commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as Dual (mathematics), duals; in classical logic, they are interdefinable using negation. They can also be used to define more complex quantifiers, as i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Variable (mathematics)
In mathematics, a variable (from Latin '' variabilis'', "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set. Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation. For example, the quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula. In mathematical logic, a ''variable'' is either a symbol representing an unspecified term of the theory (a meta-variable), or a basic object of the theory that is manipulated without referring to its possible intuitive interpretation. History In ancient works such as Euclid's ''Elements'', single letters refer to geometric points and shapes. In the 7th century, Brahmagupta used different colours to represent the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of Discourse
In the formal sciences, the domain of discourse, also called the universe of discourse, universal set, or simply universe, is the set of entities over which certain variables of interest in some formal treatment may range. Overview The domain of discourse is usually identified in the preliminaries, so that there is no need in the further treatment to specify each time the range of the relevant variables. Many logicians distinguish, sometimes only tacitly, between the ''domain of a science'' and the ''universe of discourse of a formalization of the science''.José Miguel Sagüillo, Domains of sciences, universe of discourse, and omega arguments, History and philosophy of logic, vol. 20 (1999), pp. 267–280. Examples For example, in an interpretation of first-order logic, the domain of discourse is the set of individuals over which the quantifiers range. A proposition such as is ambiguous, if no domain of discourse has been identified. In one interpretation, the domain of di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Predicate (logic)
In logic, a predicate is a symbol which represents a property or a relation. For instance, in the first order formula P(a), the symbol P is a predicate which applies to the individual constant a. Similarly, in the formula R(a,b), R is a predicate which applies to the individual constants a and b. In the semantics of logic, predicates are interpreted as relations. For instance, in a standard semantics for first-order logic, the formula R(a,b) would be true on an interpretation if the entities denoted by a and b stand in the relation denoted by R. Since predicates are non-logical symbols, they can denote different relations depending on the interpretation used to interpret them. While first-order logic only includes predicates which apply to individual constants, other logics may allow predicates which apply to other predicates. Predicates in different systems * In propositional logic, atomic formulas are sometimes regarded as zero-place predicates In a sense, these are nullar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formula
In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the term ''formula'' in science refers to the general construct of a relationship between given quantities. The plural of ''formula'' can be either ''formulas'' (from the most common English plural noun form) or, under the influence of scientific Latin, ''formulae'' (from the original Latin). In mathematics In mathematics, a formula generally refers to an identity which equates one mathematical expression to another, with the most important ones being mathematical theorems. Syntactically, a formula (often referred to as a ''well-formed formula'') is an entity which is constructed using the symbols and formation rules of a given logical language. For example, determining the volume of a sphere requires a significant amount of integral calculus or its geometrical analogue, the method of exhaustion. However, having done t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Satisfiable
In mathematical logic, a formula is ''satisfiable'' if it is true under some assignment of values to its variables. For example, the formula x+3=y is satisfiable because it is true when x=3 and y=6, while the formula x+1=x is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is ''valid'' if every assignment of values to its variables makes the formula true. For example, x+3=3+x is valid over the integers, but x+3=y is not. Formally, satisfiability is studied with respect to a fixed logic defining the syntax of allowed symbols, such as first-order logic, second-order logic or propositional logic. Rather than being syntactic, however, satisfiability is a semantic property because it relates to the ''meaning'' of the symbols, for example, the meaning of + in a formula such as x+1=x. Formally, we define an interpretation (or model) to be an assignment of values to the variables and an assignment of meaning to all other non-logical symbol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tautology (logic)
In mathematical logic, a tautology (from el, ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. It cannot be untrue. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be Contingency (philosophy), logically contingent. Such a formula can be made either true or false based on the values assigned to its propositi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]