Exactness (other)
   HOME
*





Exactness (other)
In mathematics, exactness may refer to: * Exact category * Exact functor ** Landweber exact functor theorem * Exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ... See also * Exactness of measurements * Accuracy and precision {{Mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Category
In mathematics, an exact category is a concept of category theory due to Daniel Quillen which is designed to encapsulate the properties of short exact sequences in abelian categories without requiring that morphisms actually possess kernels and cokernels, which is necessary for the usual definition of such a sequence. Definition An exact category E is an additive category possessing a class ''E'' of "short exact sequences": triples of objects connected by arrows : M' \to M \to M''\ satisfying the following axioms inspired by the properties of short exact sequences in an abelian category: * ''E'' is closed under isomorphisms and contains the canonical ("split exact") sequences: :: M' \to M' \oplus M''\to M''; * Suppose M \to M'' occurs as the second arrow of a sequence in ''E'' (it is an admissible epimorphism) and N \to M'' is any arrow in E. Then their pullback exists and its projection to N is also an admissible epimorphism. Dually, if M' \to M occurs as the first arrow of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Functor
In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that ''fail'' to be exact, but in ways that can still be controlled. Definitions Let P and Q be abelian categories, and let be a covariant additive functor (so that, in particular, ''F''(0) = 0). We say that ''F'' is an exact functor if whenever :0 \to A\ \stackrel \ B\ \stackrel \ C \to 0 is a short exact sequence in P then :0 \to F(A) \ \stackrel \ F(B)\ \stackrel \ F(C) \to 0 is a short exact sequence in Q. (The maps are often omitted and implied, and one says: "if 0→''A''→''B''→''C''→0 is exact, then 0→''F''(''A'')→''F''(''B'')→''F''(''C'')→0 is also exact".) Further, we say that ''F'' is *left-exact if whenever 0→''A''→''B''→' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Landweber Exact Functor Theorem
In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or LEFT for short) can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law. Statement The coefficient ring of complex cobordism is MU_*(*) = MU_* \cong \Z _1,x_2,\dots/math>, where the degree of x_i is 2i. This is isomorphic to the graded Lazard ring \mathcalL_*. This means that giving a formal group law F (of degree -2) over a graded ring R_* is equivalent to giving a graded ring morphism L_*\to R_*. Multiplication by an integer n>0 is defined inductively as a power series, by : +1F x = F(x, F x) and F x = x. Let now F be a formal group law over a ring \mathcalR_*. Define for a topological space ''X'' :E_*(X) = MU_*(X)\otimes_R_* Here R_* gets its MU_*-algebra structure via F. The ques ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exact Sequence
An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of

picture info

Measurement
Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared to a basic reference quantity of the same kind. The scope and application of measurement are dependent on the context and discipline. In natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the ''International vocabulary of metrology'' published by the International Bureau of Weights and Measures. However, in other fields such as statistics as well as the social and behavioural sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales. Measurement is a cornerstone of trade, science, technology and quantitative research in many disciplines. Historically, many measurement systems existed fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]