Eureka Theorem
   HOME
*





Eureka Theorem
In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most -gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the -gonal numbers form an additive basis of order . Examples Three such representations of the number 17, for example, are shown below: *17 = 10 + 6 + 1 (''triangular numbers'') *17 = 16 + 1 (''square numbers'') *17 = 12 + 5 (''pentagonal numbers''). History The theorem is named after Pierre de Fermat, who stated it, in 1638, without proof, promising to write it in a separate work that never appeared.. Joseph Louis Lagrange proved the square case in 1770, which states that every positive number can be represented as a sum of four squares, for example, . Gauss proved the triangular case in 1796, commemorating the occasion by writing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Number Theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Two principal objects of study are the sumset of two subsets ''A'' and ''B'' of elements from an abelian group ''G'', :A + B = \, and the h-fold sumset of ''A'', :hA = \underset\,. Additive number theory The field is principally devoted to consideration of ''direct problems'' over (typically) the integers, that is, determining the structure of ''hA'' from the structure of ''A'': for example, determining which elements can be represented as a sum from ''hA'', where ''A'' is a fixed subset.Nathanson (1996) II:1 Two classical problems of this type are the Goldbach conjecture (which is the conjecture that 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simon & Schuster
Simon & Schuster () is an American publishing company and a subsidiary of Paramount Global. It was founded in New York City on January 2, 1924 by Richard L. Simon and M. Lincoln Schuster. As of 2016, Simon & Schuster was the third largest publisher in the United States, publishing 2,000 titles annually under 35 different imprints. History Early years In 1924, Richard Simon's aunt, a crossword puzzle enthusiast, asked whether there was a book of ''New York World'' crossword puzzles, which were very popular at the time. After discovering that none had been published, Simon and Max Schuster decided to launch a company to exploit the opportunity.Frederick Lewis Allen, ''Only Yesterday: An Informal History of the 1920s'', p. 165. . At the time, Simon was a piano salesman and Schuster was editor of an automotive trade magazine. They pooled , equivalent to $ today, to start a company that published crossword puzzles. The new publishing house used "fad" publishing to publish bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. *Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive number th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Number Theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Two principal objects of study are the sumset of two subsets ''A'' and ''B'' of elements from an abelian group ''G'', :A + B = \, and the h-fold sumset of ''A'', :hA = \underset\,. Additive number theory The field is principally devoted to consideration of ''direct problems'' over (typically) the integers, that is, determining the structure of ''hA'' from the structure of ''A'': for example, determining which elements can be represented as a sum from ''hA'', where ''A'' is a fixed subset.Nathanson (1996) II:1 Two classical problems of this type are the Goldbach conjecture (which is the conjecture that 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Waring's Problem
In number theory, Waring's problem asks whether each natural number ''k'' has an associated positive integer ''s'' such that every natural number is the sum of at most ''s'' natural numbers raised to the power ''k''. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring, after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909. Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants". Relationship with Lagrange's four-square theorem Long before Waring posed his problem, Diophantus had asked whether every positive integer could be represented as the sum of four perfect squares greater than or equal to zero. This question later became known as Bachet's conjecture, after the 1621 translation of Diophantus by Claude Gaspard Bachet de Méziriac, and it was solved by Joseph-Louis Lag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pollock's Conjectures
Pollock's conjectures are two closely related unproven conjectures in additive number theory. They were first stated in 1850 by Sir Frederick Pollock, better known as a lawyer and politician, but also a contributor of papers on mathematics to the Royal Society. These conjectures are a partial extension of the Fermat polygonal number theorem to three-dimensional figurate numbers, also called polyhedral numbers. *Pollock tetrahedral numbers conjecture: Every positive integer is the sum of at most five tetrahedral numbers. The numbers that are not the sum of at most 4 tetrahedral numbers are given by the sequence 17, 27, 33, 52, 73, ..., of 241 terms, with 343867 being almost certainly the last such number. *Pollock octahedral numbers conjecture: Every positive integer is the sum of at most seven octahedral numbers. This conjecture has been proven for all but finitely many positive integers. *Polyhedral numbers conjecture: Let ''m'' be the number of vertices of a platonic solid “r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cauchy
Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He was one of the first to state and rigorously prove theorems of calculus, rejecting the heuristic principle of the generality of algebra of earlier authors. He almost singlehandedly founded complex analysis and the study of permutation groups in abstract algebra. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: "More concepts and theorems have been named for Cauchy than for any other mathematician (in Elasticity (physics), elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aequationes Mathematicae
''Aequationes Mathematicae'' is a mathematical journal. It is primarily devoted to functional equations, but also publishes papers in dynamical systems, combinatorics, and geometry. As well as publishing regular journal submissions on these topics, it also regularly reports on international symposia on functional equations and produces bibliographies on the subject. János Aczél founded the journal in 1968 at the University of Waterloo, in part because of the long publication delays of up to four years in other journals at the time of its founding. It is currently published by Springer Science+Business Media, with Zsolt Páles of the University of Debrecen as its editor in chief. János Aczél remains its honorary editor in chief. it was listed as a second-quartile mathematics journal by SCImago Journal Rank The SCImago Journal Rank (SJR) indicator is a measure of the prestige of scholarly journals that accounts for both the number of citations received by a journal and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Disquisitiones Arithmeticae
The (Latin for "Arithmetical Investigations") is a textbook of number theory written in Latin by Carl Friedrich Gauss in 1798 when Gauss was 21 and first published in 1801 when he was 24. It is notable for having had a revolutionary impact on the field of number theory as it not only made the field truly rigorous and systematic but also paved the path for modern number theory. In this book Gauss brought together and reconciled results in number theory obtained by mathematicians such as Fermat, Euler, Lagrange, and Legendre and added many profound and original results of his own. Scope The ''Disquisitiones'' covers both elementary number theory and parts of the area of mathematics now called algebraic number theory. Gauss did not explicitly recognize the concept of a group, which is central to modern algebra, so he did not use this term. His own title for his subject was Higher Arithmetic. In his Preface to the ''Disquisitiones'', Gauss describes the scope of the book as follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eureka (word)
Archimedes exclaiming ''Eureka''. In his excitement, he forgets to dress and runs nude in the streets straight out of his bath ''Eureka'' ( grc, εὕρηκα) is an interjection used to celebrate a discovery or invention. It is a transliteration of an exclamation attributed to Ancient Greek mathematician and inventor Archimedes. Etymology "Eureka" comes from the Ancient Greek word εὕρηκα ''heúrēka'', meaning "I have found (it)", which is the first person singular perfect indicative active of the verb εὑρίσκω ''heurískō'' "I find". It is closely related to ''heuristic'', which refers to experience-based techniques for problem-solving, learning, and discovery. Pronunciation The accent of the English word is on the second syllable, following Latin rules of accent, which require that a penult (next-to-last syllable) must be accented if it contains a long vowel. In the Greek pronunciation, the first syllable has a high pitch accent, because the Ancient Gree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polygonal Number
In mathematics, a polygonal number is a number represented as dots or pebbles arranged in the shape of a regular polygon. The dots are thought of as alphas (units). These are one type of 2-dimensional figurate numbers. Definition and examples The number 10 for example, can be arranged as a triangle (see triangular number): : But 10 cannot be arranged as a square (geometry), square. The number 9, on the other hand, can be (see square number): : Some numbers, like 36, can be arranged both as a square and as a triangle (see square triangular number): : By convention, 1 is the first polygonal number for any number of sides. The rule for enlarging the polygon to the next size is to extend two adjacent arms by one point and to then add the required extra sides between those points. In the following diagrams, each extra layer is shown as in red. Triangular numbers : Square numbers : Polygons with higher numbers of sides, such as pentagons and hexagons, can also be constructe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]