Ernst Carl Gerlach Stueckelberg
   HOME
*



picture info

Ernst Carl Gerlach Stueckelberg
Ernst Carl Gerlach Stueckelberg (baptised as Johann Melchior Ernst Karl Gerlach Stückelberg, full name after 1911: Baron Ernst Carl Gerlach Stueckelberg von Breidenbach zu Breidenstein und Melsbach; 1 February 1905 – 4 September 1984) was a Swiss mathematician and physicist, regarded as one of the most eminent physicists of the 20th century. Despite making key advances in theoretical physics, including the exchange particle model of fundamental forces, causal S-matrix theory, and the renormalization group, his idiosyncratic style and publication in minor journals led to his work not being widely recognized until the mid-1990s. Early life Born into a semi-aristocratic family in Basel in 1905, Stueckelberg's father was a lawyer, and his paternal grandfather a distinguished Swiss artist. A highly gifted school student, Stueckelberg initially began a physics degree at the University of Basel in 1923. Career While still a student, Stueckelberg was invited by the distinguished qua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stueckelberg Action
In field theory, the Stueckelberg action (named after Ernst Stueckelberg) describes a massive spin-1 field as an R (the real numbers are the Lie algebra of U(1)) Yang–Mills theory coupled to a real scalar field φ. This scalar field takes on values in a real 1D affine representation of R with'' m'' as the coupling strength. :\mathcal=-\frac(\partial^\mu A^\nu-\partial^\nu A^\mu)(\partial_\mu A_\nu-\partial_\nu A_\mu)+\frac(\partial^\mu \phi+m A^\mu)(\partial_\mu \phi+m A_\mu) This is a special case of the Higgs mechanism, where, in effect, and thus the mass of the Higgs scalar excitation has been taken to infinity, so the Higgs has decoupled and can be ignored, resulting in a nonlinear, affine representation of the field, instead of a linear representation — in contemporary terminology, a U(1) nonlinear -model. Gauge-fixing φ=0, yields the Proca action. This explains why, unlike the case for non-abelian vector fields, quantum electrodynamics with a massive pho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


S-matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More formally, in the context of QFT, the ''S''-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the ''in-states'' and the ''out-states'') in the Hilbert space of physical states. A multi-particle state is said to be ''free'' (non-interacting) if it transforms under Lorentz transformations as a tensor product, or ''direct product'' in physics parlance, of ''one-particle states'' as prescribed by equation below. ''Asymptotically free'' then means that the state has this appearance in either the distant past or the distant future. While the ''S''-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no event horizons, it has a simple form in the case of the Minkowsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lorentz-covariant
In relativistic mechanics, relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space". Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings: # A physical quantity is said to be Lorentz covariant if it transforms under a given group representation, representation of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalar (physics), scalars, four-vectors, four-tensors, and spin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE