Erdős–Straus Conjecture
   HOME
*





Erdős–Straus Conjecture
The Erdős–Straus conjecture is an unproven statement in number theory. The conjecture is that, for every integer n that is 2 or more, there exist positive integers x, y, and z for which \frac=\frac+\frac+\frac. In other words, the number 4/n can be written as a sum of three positive unit fractions. The conjecture is named after Paul Erdős and Ernst G. Straus, who formulated it in 1948, but it is connected to much more ancient mathematics; sums of unit fractions, like the one in this problem, are known as Egyptian fractions, because of their use in ancient Egyptian mathematics. The Erdős–Straus conjecture is one of many conjectures by Erdős, and one of many unsolved problems in mathematics concerning Diophantine equations. Although a solution is not known for all values of , infinitely many values in certain infinite arithmetic progressions have simple formulas for their solution, and skipping these known values can speed up searches for counterexamples. Additionally, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Problem
In science and mathematics, an open problem or an open question is a known problem which can be accurately stated, and which is assumed to have an objective and verifiable solution, but which has not yet been solved (i.e., no solution for it is known). In the history of science, some of these supposed open problems were "solved" by means of showing that they were not well-defined. In mathematics, many open problems are concerned with the question of whether a certain definition is or is not consistent. Two notable examples in mathematics that have been solved and ''closed'' by researchers in the late twentieth century are Fermat's Last Theorem and the four-color theorem.K. Appel and W. Haken (1977), "Every planar map is four colorable. Part I. Discharging", ''Illinois J. Math'' 21: 429–490. K. Appel, W. Haken, and J. Koch (1977), "Every planar map is four colorable. Part II. Reducibility", ''Illinois J. Math'' 21: 491–567. An important open mathematics problem solved i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distinct Unit Fractions
Distinction, distinct or distinctive may refer to: * Distinction (philosophy), the recognition of difference * Formal distinction * Distinction (law), a principle in international law governing the legal use of force in an armed conflict * Distinction (sociology), a social force that places different values on different individuals * Distinct (mathematics) * Distinctive feature, a concept in linguistics * ''Distinción'', in Spanish, separating consonantal sounds, see Phonological history of Spanish coronal fricatives * The Hua–Yi distinction, the difference between ''China'' (Hua) and barbarian outsiders (Yi), applied culturally and ethnically * ''Distinction (book)'', a book by Pierre Bourdieu * Distinction (horse), Irish gelding, third in the 2005 Melbourne Cup * Distinction (song), song and album by The Suffrajets Awards and honors * an Award or quality of an award recipient * Latin honors, indications of relative achievement among academic degree recipients * Any one of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Manin Obstruction
In mathematics, in the field of arithmetic algebraic geometry, the Manin obstruction (named after Yuri Manin) is attached to a variety ''X'' over a global field, which measures the failure of the Hasse principle for ''X''. If the value of the obstruction is non-trivial, then ''X'' may have points over all local fields but not over the global field. The Manin obstruction is sometimes called the Brauer–Manin obstruction, as Manin used the Brauer group of X to define it. For abelian varieties the Manin obstruction is just the Tate–Shafarevich group and fully accounts for the failure of the local-to-global principle (under the assumption that the Tate–Shafarevich group is finite). There are however examples, due to Alexei Skorobogatov Alexei Nikolaievich Skorobogatov (russian: Алексе́й Никола́евич Скоробога́тов) is a British-Russian mathematician and Professor in Pure Mathematics at Imperial College London specialising in algebraic geometry. Hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then without knowing the value of ''n'', we can determine that the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if ''n'' is a natural number less than 105, then 23 is the only possible value of ''n''. The earliest known statement of the theorem is by the Chinese mathematician Sun-tzu in the '' Sun-tzu Suan-ching'' in the 3rd century CE. The Chinese remainder theorem is widely used for computing with lar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (i.e. the group of units of the ring Z/''p''''n''Z) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hasse Principle
In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number. This is handled by examining the equation in the completions of the rational numbers: the real numbers and the ''p''-adic numbers. A more formal version of the Hasse principle states that certain types of equations have a rational solution if and only if they have a solution in the real numbers ''and'' in the ''p''-adic numbers for each prime ''p''. Intuition Given a polynomial equation with rational coefficients, if it has a rational solution, then this also yields a real solution and a ''p''-adic solution, as the rationals embed in the reals and ''p''-adics: a global solution yields local solutions at each prime. The Hasse principle asks when the reverse can be done, or rather, asks what the obstruction is: wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' refers only to ''univariate equations'', that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the ''multivariate'' case), the term ''polynomial equation'' is usually preferred to ''algebraic equation''. For example, :x^5-3x+1=0 is an algebraic equation with integer coefficients and :y^4 + \frac - \frac + xy^2 + y^2 + \frac = 0 is a multivariate polynomial equation over the rationals. Some but not all polynomial equations with rational coefficients have a solution that is an algebraic expression that can be found using a finite number of operations that involve only those same types of coefficients (that is, can be solved a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Identities
Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a system into varying degrees of interdependence and independence across and "hide the complexity of each part behind an abstraction and interface". However, the concept of modularity can be extended to multiple disciplines, each with their own nuances. Despite these nuances, consistent themes concerning modular systems can be identified. Contextual nuances The meaning of the word "modularity" can vary somewhat based on context. The following are contextual examples of modularity across several fields of science, technology, industry, and culture: Science *In biology, modularity recognizes that organisms or metabolic pathways are composed of modules. *In ecology, modularity is considered a key factor—along with diversity and feedback—in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. For example, the integer 14 is a composite number because it is the product of the two smaller integers 2 ×  7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brute-force Search
In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement. A brute-force algorithm that finds the divisors of a natural number ''n'' would enumerate all integers from 1 to n, and check whether each of them divides ''n'' without remainder. A brute-force approach for the eight queens puzzle would examine all possible arrangements of 8 pieces on the 64-square chessboard and for each arrangement, check whether each (queen) piece can attack any other. While a brute-force search is simple to implement and will always find a solution if it exists, implementation costs are proportional to the number of candidate solutionswhich in many practical problems tends to grow very quickly as the size of the problem increases ( §Combinator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]