Equational Logic
   HOME





Equational Logic
First-order equational logic consists of quantifier-free terms of ordinary first-order logic, with equality as the only predicate symbol. The model theory of this logic was developed into universal algebra by Birkhoff, Grätzer, and Cohn. It was later made into a branch of category theory by Lawvere ("algebraic theories").equational logic. (n.d.). The Free On-line Dictionary of Computing. Retrieved October 24, 2011, from Dictionary.com website: http://dictionary.reference.com/browse/equational+logic The terms of equational logic are built up from variables and constants using function symbols (or operations). Syllogism Here are the four inference rules of logic. P := E/math> denotes textual substitution of expression E for variable x in expression P. Next, b = c denotes equality, for b and c of the same type, while b \equiv c, or equivalence, is defined only for b and c of type boolean. For b and c of type boolean, b = c and b \equiv c have the same meaning. Gries, D. (20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Lawvere
Francis William Lawvere (; February 9, 1937 – January 23, 2023) was an American mathematician known for his work in category theory, topos theory and the philosophy of mathematics. Biography Born in Muncie, Indiana, and raised on a farm outside Mathews, Lawvere received his undergraduate degree in mathematics from Indiana University. Lawvere studied continuum mechanics and kinematics as an undergraduate with Clifford Truesdell. He learned of category theory while teaching a course on functional analysis for Truesdell, specifically from a problem in John L. Kelley's textbook ''General Topology''. Lawvere found it a promising framework for simple rigorous axioms for the physical ideas of Truesdell and Walter Noll. Truesdell supported Lawvere's application to study further with Samuel Eilenberg, a founder of category theory, at Columbia University in 1960. Before completing the Ph.D. Lawvere spent a year in Berkeley as an informal student of model theory and set theory, foll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Negation
In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. For example, if P is "Spot runs", then "not P" is "Spot does not run". An operand of a negation is called a ''negand'' or ''negatum''. Negation is a unary logical connective. It may furthermore be applied not only to propositions, but also to notions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the refutations of P. Definition ''Classical negation'' is an operation on one logical value, typically th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Logic Symbols
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, and the LaTeX symbol. Basic logic symbols Advanced or rarely used logical symbols The following symbols are either advanced and context-sensitive or very rarely used: See also * Glossary of logic * Józef Maria Bocheński * List of notation used in Principia Mathematica * List of mathematical symbols * Logic alphabet, a suggested set of logical symbols * * Logical connective * Mathematical operators and symbols in Unicode * Non-logical symbol * Polish notation * Truth function * Truth table * Wikipedia:WikiProject Logic/Standards for notation References Further reading * Józef Maria Bocheński ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example, less than and equality (mathematics), equality among real numbers are both transitive: If and then ; and if and then . Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie. On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gottfried Wilhelm Leibniz
Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many other branches of mathematics, such as binary arithmetic and statistics. Leibniz has been called the "last universal genius" due to his vast expertise across fields, which became a rarity after his lifetime with the coming of the Industrial Revolution and the spread of specialized labor. He is a prominent figure in both the history of philosophy and the history of mathematics. He wrote works on philosophy, theology, ethics, politics, law, history, philology, games, music, and other studies. Leibniz also made major contributions to physics and technology, and anticipated notions that surfaced much later in probability theory, biology, medicine, geology, psychology, linguistics and computer science. Leibniz contributed to the field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Substitution (logic)
A substitution is a syntactic transformation on formal expressions. To ''apply'' a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a ''substitution instance'', or ''instance'' for short, of the original expression. Propositional logic Definition Where ''ψ'' and ''φ'' represent formulas of propositional logic, ''ψ'' is a ''substitution instance'' of ''φ'' if and only if ''ψ'' may be obtained from ''φ'' by substituting formulas for propositional variables in ''φ'', replacing each occurrence of the same variable by an occurrence of the same formula. For example: ::''ψ:'' (R → S) & (T → S) is a substitution instance of ::''φ:'' P & Q That is, ''ψ'' can be obtained by replacing P and Q in ''φ'' with (R → S) and (T → S) respectively. Similarly: ::''ψ:'' (A ↔ A) ↔ (A ↔ A) is a substitution instance of: ::''φ:'' (A ↔ A) since ''ψ'' can be obta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denoted by 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as Logical conjunction, conjunction (''and'') denoted as , disjunction (''or'') denoted as , and negation (''not'') denoted as . Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction, and division. Boolean algebra is therefore a formal way of describing logical operations in the same way that elementary algebra describes numerical operations. Boolean algebra was introduced by George Boole in his first book ''The Mathematical Analysis of Logic'' (1847), and set forth more fully in his ''An Investigation of the Laws of Thought'' (1854). According to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inference Rule
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the logical structure of valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argument forms involving logi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantification (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first-order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The most commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic: each can be defined in terms of the other using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Cohn
Paul Moritz Cohn FRS (8 January 1924 – 20 April 2006) was Astor Professor of Mathematics at University College London, 1986–1989, and author of many textbooks on algebra. His work was mostly in the area of algebra, especially non-commutative rings.Independent Early life Cohn was the only child of Jewish parents, James (or Jakob) Cohn, owner of an import business, and Julia (''née'' Cohen), a schoolteacher.Autobiography Both of his parents were born in Hamburg, as were three of his grandparents. His ancestors came from various parts of Germany. His father fought in the German army in World War I; he was wounded several times and awarded the Iron Cross. A street in Hamburg is named in memory of his mother.De Morgan When he was born, his parents were living with his mother's mother in Isestraße. After her death in October 1925, the family moved to a rented flat in a new building in Lattenkamp, in the Winterhude quarter. He attended a kindergarten then, in April 1930, m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]