Eisenstein Triple
   HOME
*





Eisenstein Triple
Similar to a Pythagorean triple, an Eisenstein triple (named after Gotthold Eisenstein) is a set of integers which are the lengths of the sides of a triangle where one of the angles is 60 or 120 degrees. The relation of such triangles to the Eisenstein integers is analogous to the relation of Pythagorean triples to the Gaussian integers. Triangles with an angle of 60° Triangles with an angle of 60° are a special case of the Law of Cosines: :c^2 = a^2 - ab + b^2. When the lengths of the sides are integers, the values form a set known as an Eisenstein triple. Examples of Eisenstein triples include: Triangles with an angle of 120° A similar special case of the Law of Cosines relates the sides of a triangle with an angle of 120 degrees: :c^2 = a^2 + ab + b^2. Examples of such triangles include: {, class="wikitable" , - ! Side ''a'' ! Side ''b'' ! Side ''c'' , - , 3 , 5 , 7 , - , 7 , 8 , 13 , - , 5 , 16 , 19 See also * Loeschian number * Integer_triangle#Integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagorean Triple
A Pythagorean triple consists of three positive integers , , and , such that . Such a triple is commonly written , and a well-known example is . If is a Pythagorean triple, then so is for any positive integer . A primitive Pythagorean triple is one in which , and are coprime (that is, they have no common divisor larger than 1). For example, is a primitive Pythagorean triple whereas is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle. The name is derived from the Pythagorean theorem, stating that every right triangle has side lengths satisfying the formula a^2+b^2=c^2; thus, Pythagorean triples describe the three integer side lengths of a right triangle. However, right triangles with non-integer sides do not form Pythagorean triples. For instance, the triangle with sides a=b=1 and c=\sqrt2 is a right triangle, but (1,1,\sqrt2) is not a Pythagorean triple because \sqrt2 is not an integer. Moreover, 1 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gotthold Eisenstein
Ferdinand Gotthold Max Eisenstein (16 April 1823 – 11 October 1852) was a German mathematician. He specialized in number theory and analysis, and proved several results that eluded even Gauss. Like Galois and Abel before him, Eisenstein died before the age of 30. He was born and died in Berlin, Prussia. Early life His parents, Johann Konstantin Eisenstein and Helene Pollack, were of Jewish descent and converted to Protestantism prior to his birth. From an early age, he demonstrated talent in mathematics and music. As a young child he learned to play piano, and he continued to play and compose for piano throughout his life. He suffered various health problems throughout his life, including meningitis as an infant, a disease that took the lives of all five of his brothers and sisters. In 1837, at the age of 14, he enrolled at Friedrich Wilhelm Gymnasium, and soon thereafter at Friedrich Werder Gymnasium in Berlin. His teachers recognized his talents in mathematics, but by 15 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of Euclid's Elements. The names used for modern classification are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eisenstein Integer
In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form :z = a + b\omega , where and are integers and :\omega = \frac = e^ is a primitive (hence non-real) cube root of unity. The Eisenstein integers form a triangular lattice in the complex plane, in contrast with the Gaussian integers, which form a square lattice in the complex plane. The Eisenstein integers are a countably infinite set. Properties The Eisenstein integers form a commutative ring of algebraic integers in the algebraic number field \mathbb(\omega) — the third cyclotomic field. To see that the Eisenstein integers are algebraic integers note that each is a root of the monic polynomial :z^2 - (2a - b)\;\!z + \left(a^2 - ab + b^2\right)~. In particular, satisfies the equation :\omega^2 + \omega + 1 = 0~. The product of two Eisenstein integers and is given explicitly by :( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Integer
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /math> or \Z Gaussian integers share many properties with integers: they form a Euclidean domain, and have thus a Euclidean division and a Euclidean algorithm; this implies unique factorization and many related properties. However, Gaussian integers do not have a total ordering that respects arithmetic. Gaussian integers are algebraic integers and form the simplest ring of quadratic integers. Gaussian integers are named after the German mathematician Carl Friedrich Gauss. Basic definitions The Gaussian integers are the set :\mathbf \, \qquad \text i^2 = -1. In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers. Since the Gaussian integers are closed under addition and mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eisenstein Triple
Similar to a Pythagorean triple, an Eisenstein triple (named after Gotthold Eisenstein) is a set of integers which are the lengths of the sides of a triangle where one of the angles is 60 or 120 degrees. The relation of such triangles to the Eisenstein integers is analogous to the relation of Pythagorean triples to the Gaussian integers. Triangles with an angle of 60° Triangles with an angle of 60° are a special case of the Law of Cosines: :c^2 = a^2 - ab + b^2. When the lengths of the sides are integers, the values form a set known as an Eisenstein triple. Examples of Eisenstein triples include: Triangles with an angle of 120° A similar special case of the Law of Cosines relates the sides of a triangle with an angle of 120 degrees: :c^2 = a^2 + ab + b^2. Examples of such triangles include: {, class="wikitable" , - ! Side ''a'' ! Side ''b'' ! Side ''c'' , - , 3 , 5 , 7 , - , 7 , 8 , 13 , - , 5 , 16 , 19 See also * Loeschian number * Integer_triangle#Integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Cosines
In trigonometry, the law of cosines (also known as the cosine formula, cosine rule, or al-Kashi's theorem) relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states :c^2 = a^2 + b^2 - 2ab\cos\gamma, where denotes the angle contained between sides of lengths and and opposite the side of length . For the same figure, the other two relations are analogous: :a^2=b^2+c^2-2bc\cos\alpha, :b^2=a^2+c^2-2ac\cos\beta. The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if the angle is a right angle (of measure 90 degrees, or radians), then , and thus the law of cosines reduces to the Pythagorean theorem: :c^2 = a^2 + b^2. The law of cosines is useful for computing the third side of a triangle when two sides and their enclosed angle are known. History Though the notion of the cosine was not yet developed in his time, Euclid's '' Elements'', dating back to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

120-degree-integer-triangle
1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by  2, although by other definitions 1 is the second natural number, following  0. The fundamental mathematical property of 1 is to be a multiplicative identity, meaning that any number multiplied by 1 equals the same number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a prime number; this was not universally accepted until the mid-20th century. Additionally, 1 is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Triangle
An integer triangle or integral triangle is a triangle all of whose sides have lengths that are integers. A rational triangle can be defined as one having all sides with rational length; any such rational triangle can be integrally rescaled (can have all sides multiplied by the same integer, namely a common multiple of their denominators) to obtain an integer triangle, so there is no substantive difference between integer triangles and rational triangles in this sense. However, other definitions of the term "rational triangle" also exist: In 1914 Carmichael used the term in the sense that we today use the term Heronian triangle; SomosSomos, M., "Rational triangles", http://grail.eecs.csuohio.edu/~somos/rattri.html uses it to refer to triangles whose ratios of sides are rational; Conway and GuyConway, J. H., and Guy, R. K., "The only rational triangle", in ''The Book of Numbers'', 1996, Springer-Verlag, pp. 201 and 228–239. define a rational triangle as one with rational side ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Problems Of Plane Geometry
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today. History The prehistory of arithmetic is limited to a small number of artifacts, which may indicate the conception of addition and subtraction, the best-known being the Ishango bone from central Africa, dating from somewhere between 20,000 and 18,000 BC, although its interpretation is disputed. The earliest written records indicate the Egyptians and Babylonians used all the elementary arithmetic operations: addition, subtraction, multiplication, and division, as early as 2000 BC. These artifacts do not always reveal the specific process used for solving problems, but the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]