HOME
*





Euler's Factorization Method
Euler's factorization method is a technique for factoring a number by writing it as a sum of two squares in two different ways. For example the number 1000009 can be written as 1000^2 + 3^2 or as 972^2 + 235^2 and Euler's method gives the factorization 1000009 = 293 \cdot 3413. The idea that two distinct representations of an odd positive integer may lead to a factorization was apparently first proposed by Marin Mersenne. However, it was not put to use extensively until one hundred years later by Euler. His most celebrated use of the method that now bears his name was to factor the number 1000009, which apparently was previously thought to be prime even though it is not a pseudoprime by any major primality test. Euler's factorization method is more effective than Fermat's for integers whose factors are not close together and potentially much more efficient than trial division if one can find representations of numbers as sums of two squares reasonably easily. Euler's development ul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of mathematics such as analytic number theory, complex analysis, and infinitesimal calculus. He introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy and music theory. Euler is held to be one of the greatest mathematicians in history and the greatest of the 18th century. A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is the master of us all." Carl Friedrich Gauss remarked: "The study of Euler's works will remain the best school for the different fields of mathematics, and nothing else can replace it." Euler is also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Factorization
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing. In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (RSA-240) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit RSA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Marin Mersenne
Marin Mersenne, OM (also known as Marinus Mersennus or ''le Père'' Mersenne; ; 8 September 1588 – 1 September 1648) was a French polymath whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for Mersenne prime numbers, those which can be written in the form for some integer . He also developed Mersenne's laws, which describe the harmonics of a vibrating string (such as may be found on guitars and pianos), and his seminal work on music theory, ''Harmonie universelle'', for which he is referred to as the "father of acoustics". Mersenne, an ordained Catholic priest, had many contacts in the scientific world and has been called "the center of the world of science and mathematics during the first half of the 1600s" and, because of his ability to make connections between people and ideas, "the post-box of Europe". He was also a member of the Minim religious order and wrote and lectured on theology and philosophy. Life Mersenne was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoprime
A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) that is not actually prime. Pseudoprimes are classified according to which property of primes they satisfy. Some sources use the term pseudoprime to describe all probable primes, both composite numbers and actual primes. Pseudoprimes are of primary importance in public-key cryptography, which makes use of the difficulty of factoring large numbers into their prime factors. Carl Pomerance estimated in 1988 that it would cost $10 million to factor a number with 144 digits, and $100 billion to factor a 200-digit number (the cost today is dramatically lower but still prohibitively high). But finding two large prime numbers as needed for this use is also expensive, so various probabilistic primality tests are used, some of which in rare cases inappropriately deliver composite numbers instead of primes. On the other hand, deterministic primality tests, such as the AKS primality test, do not g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fermat's Factorization Method
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: :N = a^2 - b^2. That difference is algebraically factorable as (a+b)(a-b); if neither factor equals one, it is a proper factorization of ''N''. Each odd number has such a representation. Indeed, if N=cd is a factorization of ''N'', then :N = \left(\frac\right)^2 - \left(\frac\right)^2 Since ''N'' is odd, then ''c'' and ''d'' are also odd, so those halves are integers. (A multiple of four is also a difference of squares: let ''c'' and ''d'' be even.) In its simplest form, Fermat's method might be even slower than trial division (worst case). Nonetheless, the combination of trial division and Fermat's is more effective than either. Basic method One tries various values of ''a'', hoping that a^2-N = b^2, a square. FermatFactor(N): ''// N should be odd'' a ← b2 ← a*a - N repeat until b2 is a square: a ← a + 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. For example, the integer 14 is a composite number because it is the product of the two smaller integers 2 ×  7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer
A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as Computer program, programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the Computer hardware, hardware, operating system (main software), and peripheral equipment needed and used for full operation. This term may also refer to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of Programmable logic controller, industrial and Consumer electronics, consumer products use computers as control systems. Simple special-purpose devices like microwave ovens and remote controls are included, as are factory devices like industrial robots and computer-aided design, as well as general-purpose devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brahmagupta–Fibonacci Identity
In algebra, the Brahmagupta–Fibonacci identity expresses the product of two sums of two squares as a sum of two squares in two different ways. Hence the set of all sums of two squares is closed under multiplication. Specifically, the identity says :\begin \left(a^2 + b^2\right)\left(c^2 + d^2\right) & = \left(ac-bd\right)^2 + \left(ad+bc\right)^2 & & (1) \\ & = \left(ac+bd\right)^2 + \left(ad-bc\right)^2. & & (2) \end For example, :(1^2 + 4^2)(2^2 + 7^2) = 26^2 + 15^2 = 30^2 + 1^2. The identity is also known as the Diophantus identity,Daniel Shanks, Solved and unsolved problems in number theory, p.209, American Mathematical Society, Fourth edition 1993. as it was first proved by Diophantus of Alexandria. It is a special case of Euler's four-square identity, and also of Lagrange's identity. Brahmagupta proved and used a more general identity (the Brahmagupta identity), equivalent to :\begin \left(a^2 + nb^2\right)\left(c^2 + nd^2\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]