HOME
*





Erdős–Hajnal Conjecture
In graph theory, a branch of mathematics, the Erdős–Hajnal conjecture states that families of graphs defined by forbidden induced subgraphs have either large cliques or large independent sets. It is named for Paul Erdős and András Hajnal. More precisely, for an arbitrary undirected graph H, let \mathcal_H be the family of graphs that do not have H as an induced subgraph. Then, according to the conjecture, there exists a constant \delta_H > 0 such that the n-vertex graphs in \mathcal_H have either a clique or an independent set of size \Omega(n^). An equivalent statement to the original conjecture is that, for every graph H, the H-free graphs all contain polynomially large perfect induced subgraphs. Graphs without large cliques or independent sets In contrast, for random graphs in the Erdős–Rényi model with edge probability 1/2, both the maximum clique and the maximum independent set are much smaller: their size is proportional to the logarithm of n, rather than growin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey's Theorem
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let and be any two positive integers. Ramsey's theorem states that there exists a least positive integer for which every blue-red edge colouring of the complete graph on vertices contains a blue clique on vertices or a red clique on vertices. (Here signifies an integer that depends on both and .) Ramsey's theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. This initiated the combinatorial theory now called Ramsey theory, that seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In this application it is a question of the existence of ''monochromatic subsets'', that is, subsets of connected edges of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjectures
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey Theory
Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of mathematics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee that a particular property holds?" More specifically, Ron Graham described Ramsey theory as a "branch of combinatorics". Examples A typical result in Ramsey theory starts with some mathematical structure that is then cut into pieces. How big must the original structure be in order to ensure that at least one of the pieces has a given interesting property? This idea can be defined as partition regularity. For example, consider a complete graph of order ''n''; that is, there are ''n'' vertices and each vertex is connected to every other vertex by an edge. A complete graph of order 3 is called a triangle. Now colour each edge either red or blue. How large must ''n'' be in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tournament (graph Theory)
In graph theory, a tournament is a directed graph with exactly one edge between each two vertices, in one of the two possible directions. Equivalently, a tournament is an orientation of an undirected complete graph; however, as directed graphs, tournaments are not complete: complete directed graphs have two edges, in both directions, between each two vertices. The name ''tournament'' comes from interpreting the graph as the outcome of a round-robin tournament, a game where each player is paired against every other exactly once. In a tournament, the vertices represent the players, and the edges between players point from the winner to the loser. Many of the important properties of tournaments were investigated by H. G. Landau in 1953 to model dominance relations in flocks of chickens. Tournaments are also heavily-studied in voting theory, where they can represent partial information about voter preferences among multiple candidates, and are central to the definition of Condorcet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tournament (graph Theory)
A tournament is a directed graph (digraph) obtained by assigning a direction for each edge in an undirected complete graph. That is, it is an orientation of a complete graph, or equivalently a directed graph in which every pair of distinct vertices is connected by a directed edge (often, called an arc) with any one of the two possible orientations. Many of the important properties of tournaments were first investigated by H. G. Landau in to model dominance relations in flocks of chickens. Current applications of tournaments include the study of voting theory and social choice theory among other things. The name ''tournament'' originates from such a graph's interpretation as the outcome of a round-robin tournament in which every player encounters every other player exactly once, and in which no draws occur. In the tournament digraph, the vertices correspond to the players. The edge between each pair of players is oriented from the winner to the loser. If player a beats player b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Seymour (mathematician)
Paul D. Seymour (born 26 July 1950) is a British mathematician known for his work in discrete mathematics, especially graph theory. He (with others) was responsible for important progress on regular matroids and totally unimodular matrices, the four colour theorem, linkless embeddings, graph minors and structure, the perfect graph conjecture, the Hadwiger conjecture, claw-free graphs, χ-boundedness, and the Erdős–Hajnal conjecture. Many of his recent papers are available from his website. Seymour is currently the Albert Baldwin Dod Professor of Mathematics at Princeton University. He won a Sloan Fellowship in 1983, and the Ostrowski Prize in 2003; and (sometimes with others) won the Fulkerson Prize in 1979, 1994, 2006 and 2009, and the Pólya Prize in 1983 and 2004. He received an honorary doctorate from the University of Waterloo in 2008, one from the Technical University of Denmark in 2013, and one from the École normale supérieure de Lyon in 2022. He was an invite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maria Chudnovsky
Maria Chudnovsky (born January 6, 1977) is an Israeli-American mathematician working on graph theory and combinatorial optimization. She is a 2012 MacArthur Fellow. Education and career Chudnovsky is a professor in the department of mathematics at Princeton University. She grew up in Russia (attended Saint Petersburg Lyceum 30) and Israel, studying at the Technion, and received her Ph.D. in 2003 from Princeton University under the supervision of Paul Seymour. After postdoctoral research at the Clay Mathematics Institute,. she became an assistant professor at Princeton University in 2005, and moved to Columbia University in 2006. By 2014, she was the Liu Family Professor of Industrial Engineering and Operations Research at Columbia. She returned to Princeton as a professor of mathematics in 2015. Research Chudnovsky's contributions to graph theory include the proof of the strong perfect graph theorem (with Neil Robertson, Paul Seymour, and Robin Thomas) characterizing perf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even number of vertices * 2-regular * 2-ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorica
''Combinatorica'' is an international journal of mathematics, publishing papers in the fields of combinatorics and computer science. It started in 1981, with László Babai and László Lovász as the editors-in-chief with Paul Erdős as honorary editor-in-chief. The current editors-in-chief are Imre Bárány and József Solymosi. The advisory board consists of Ronald Graham, Gyula O. H. Katona, Miklós Simonovits, Vera Sós, and Endre Szemerédi. It is published by the János Bolyai Mathematical Society and Springer Verlag. The following members of the '' Hungarian School of Combinatorics'' have strongly contributed to the journal as authors, or have served as editors: Miklós Ajtai, László Babai, József Beck, András Frank, Péter Frankl, Zoltán Füredi, András Hajnal, Gyula Katona, László Lovász, László Pyber, Alexander Schrijver, Miklós Simonovits, Vera Sós, Endre Szemerédi, Tamás Szőnyi, Éva Tardos, Gábor Tardos.{{cite web, url=https://www.springer.com/ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Decomposition
In graph theory, the modular decomposition is a decomposition of a graph into subsets of vertices called modules. A ''module'' is a generalization of a connected component of a graph. Unlike connected components, however, one module can be a proper subset of another. Modules therefore lead to a recursive (hierarchical) decomposition of the graph, instead of just a partition. There are variants of modular decomposition for undirected graphs and directed graphs. For each undirected graph, this decomposition is unique. This notion can be generalized to other structures (for example directed graphs) and is useful to design efficient algorithms for the recognition of some graph classes, for finding transitive orientations of comparability graphs, for optimization problems on graphs, and for graph drawing. Modules As the notion of modules has been rediscovered in many areas, ''modules'' have also been called ''autonomous sets'', ''homogeneous sets'', ''stable sets'', ''clumps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cograph
In graph theory, a cograph, or complement-reducible graph, or ''P''4-free graph, is a graph that can be generated from the single-vertex graph ''K''1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes ''K''1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C. Dacey Jr. on orthomodular lattices), and 2-parity graphs. They have a simple structural decomposition involving disjoint union and complement graph operations that can be represented concisely by a labeled tree, and used algorithmically to efficiently solve many problems such as finding the maximum clique that are hard on more general graph classes. Special cases of the cographs include the complete graphs, complete bipartite graphs, cluster gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]