Entanglement (graph Measure)
   HOME
*





Entanglement (graph Measure)
In graph theory, entanglement of a directed graph is a number measuring how strongly the cycles of the graph are intertwined. It is defined in terms of a mathematical game in which ''n'' cops try to capture a robber, who escapes along the edges of the graph. Similar to other graph measures, such as cycle rank, some algorithmic problems, e.g. parity game, can be efficiently solved on graphs of bounded entanglement. Definition The entanglement gameD. Berwanger and E. GrädelEntanglement – A Measure for the Complexity of Directed Graphs with Applications to Logic and Games Proceedings of LPAR'04, vol. 3452 of LNCS, pp. 209–223 (2004) is played by ''n'' cops against a robber on a directed graph ''G''. Initially, all cops are outside the graph and the robber selects an arbitrary starting vertex ''v'' of ''G''. Further on, the players move in turn. In each move the cops either stay where they are, or place one of them on the vertex currently occupied by the robber. The r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directed Graph
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pair where * ''V'' is a set whose elements are called '' vertices'', ''nodes'', or ''points''; * ''A'' is a set of ordered pairs of vertices, called ''arcs'', ''directed edges'' (sometimes simply ''edges'' with the corresponding set named ''E'' instead of ''A''), ''arrows'', or ''directed lines''. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called ''edges'', ''links'' or ''lines''. The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Game
A mathematical game is a game whose rules, strategies, and outcomes are defined by clear mathematical parameters. Often, such games have simple rules and match procedures, such as Tic-tac-toe and Dots and Boxes. Generally, mathematical games need not be conceptually intricate to involve deeper computational underpinnings. For example, even though the rules of Mancala are relatively basic, the game can be rigorously analyzed through the lens of combinatorial game theory. Mathematical games differ sharply from mathematical puzzles in that mathematical puzzles require specific mathematical expertise to complete, whereas mathematical games do not require a deep knowledge of mathematics to play. Often, the arithmetic core of mathematical games is not readily apparent to players untrained to note the statistical or mathematical aspects. Some mathematical games are of deep interest in the field of recreational mathematics. When studying a game's core mathematics, arithmetic theory i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycle Rank
In graph theory, the cycle rank of a directed graph is a digraph connectivity measure proposed first by Eggan and Büchi . Intuitively, this concept measures how close a digraph is to a directed acyclic graph (DAG), in the sense that a DAG has cycle rank zero, while a complete digraph of order ''n'' with a self-loop at each vertex has cycle rank ''n''. The cycle rank of a directed graph is closely related to the tree-depth of an undirected graph and to the star height of a regular language. It has also found use in sparse matrix computations (see ) and logic . Definition The cycle rank ''r''(''G'') of a digraph is inductively defined as follows: * If ''G'' is acyclic, then . * If ''G'' is strongly connected and ''E'' is nonempty, then ::r(G) = 1 + \min_ r(G-v),\, where is the digraph resulting from deletion of vertex and all edges beginning or ending at . * If ''G'' is not strongly connected, then ''r''(''G'') is equal to the maximum cycle rank among all strongly connec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parity Game
A parity game is played on a colored directed graph, where each node has been colored by a priority – one of (usually) finitely many natural numbers. Two players, 0 and 1, move a (single, shared) token along the edges of the graph. The owner of the node that the token falls on selects the successor node, resulting in a (possibly infinite) path, called the play. The winner of a finite play is the player whose opponent is unable to move. The winner of an infinite play is determined by the priorities appearing in the play. Typically, player 0 wins an infinite play if the largest priority that occurs infinitely often in the play is even. Player 1 wins otherwise. This explains the word "parity" in the title. Parity games lie in the third level of the Borel hierarchy, and are consequently determined. Games related to parity games were implicitly used in Rabin's proof of decidability of the monadic second-order theory of ''n'' successors ( S2S for ''n'' = 2), where determinacy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logic For Programming, Artificial Intelligence And Reasoning
The International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR) is an academic conference aiming at discussing cutting-edge results in the fields of automated reasoning, computational logic, programming languages and their applications. It grew out of the Russian Conferences on Logic Programming 1990 and 1991; the idea to organize the conference was largely due to Robert Kowalski who proposed to create the Russian Association for Logic Programming. The conference was renamed in 1992 to "Logic Programming ''and Automated Reasoning''" (LPAR) to reflect its extended scope, due to considerable interest in automated reasoning in the Former Soviet Union. After a break from 1995 to 1998, LPAR continued in 1999 under the name "Logic ''for'' Programming and Automated Reasoning", to indicate an extension of its logic part beyond logic programming. In 2001, the name changed to "Logic for Programming, Artificial ''Intelligence and'' Reasoning". The LPAR ste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directed Acyclic Graph
In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge directions. DAGs have numerous scientific and computational applications, ranging from biology (evolution, family trees, epidemiology) to information science (citation networks) to computation (scheduling). Directed acyclic graphs are sometimes instead called acyclic directed graphs or acyclic digraphs. Definitions A graph is formed by vertices and by edges connecting pairs of vertices, where the vertices can be any kind of object that is connected in pairs by edges. In the case of a directed graph, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strongly Connected Component
In the mathematical theory of directed graphs, a graph is said to be strongly connected if every vertex is reachable from every other vertex. The strongly connected components of an arbitrary directed graph form a partition into subgraphs that are themselves strongly connected. It is possible to test the strong connectivity of a graph, or to find its strongly connected components, in linear time (that is, Θ(''V'' + ''E'')). Definitions A directed graph is called strongly connected if there is a path in each direction between each pair of vertices of the graph. That is, a path exists from the first vertex in the pair to the second, and another path exists from the second vertex to the first. In a directed graph ''G'' that may not itself be strongly connected, a pair of vertices ''u'' and ''v'' are said to be strongly connected to each other if there is a path in each direction between them. The binary relation of being strongly connected is an equivalence relation, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]