Elias Bassalygo Bound
   HOME
*





Elias Bassalygo Bound
The Elias Bassalygo bound is a mathematical limit used in coding theory for error correction during data transmission or communications. Definition Let C be a q-ary code of length n, i.e. a subset of n.Each q-ary block code of length n is a subset of the strings of \mathcal_q^n, where the alphabet set \mathcal_q has q elements. Let R be the ''rate'' of C, \delta the ''relative distance'' and :B_q(y, \rho n) = \left \ be the '' Hamming ball'' of radius \rho n centered at y. Let \text_q(y, \rho n) = , B_q(y, \rho n), be the ''volume'' of the Hamming ball of radius \rho n . It is obvious that the volume of a Hamming Ball is translation-invariant, i.e. indifferent to y. In particular, , B_q(y, \rho n), =, B_q(0, \rho n), . With large enough n, the ''rate'' R and the ''relative distance'' \delta satisfy the Elias-Bassalygo bound: :R \leqslant 1 - H_q ( J_q(\delta))+o(1), where : H_q(x)\equiv_\text -x\log_q \left ( \right)-(1-x)\log_q is the ''q''-ary entropy func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coding Theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data. There are four types of coding: # Data compression (or ''source coding'') # Error control (or ''channel coding'') # Cryptographic coding # Line coding Data compression attempts to remove unwanted redundancy from the data from a source in order to transmit it more efficiently. For example, ZIP data compression makes data files smaller, for purposes such as to reduce Internet traffic. Data compression a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Error Correction
In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases. Definitions ''Error detection'' is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver. ''Error correction'' is the detection of errors and reconstruction of the original, error-free data. History In classical antiquity, copyists of the Hebrew Bible were paid for their work according to the number of stichs (lines of verse). As the prose books of the Bible were hardly ever wr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Transmission
Data transmission and data reception or, more broadly, data communication or digital communications is the transfer and reception of data in the form of a digital bitstream or a digitized analog signal transmitted over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal. Analog transmission is a method of conveying voice, data, image, signal or video information using a continuous signal which varies in amplitude, phase, or some other property in proportion to that of a variable. The messages are either represented by a sequence of pulses by means of a line code (''baseband transmission''), or by a limited set of continuously varying waveforms (''passband transmission''), using a digital modulat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Ball
Hamming may refer to: * Richard Hamming (1915–1998), American mathematician * Hamming(7,4), in coding theory, a linear error-correcting code * Overacting, or acting in an exaggerated way See also * Hamming code, error correction in telecommunication * Hamming distance, a way of defining how different two sequences are * Hamming weight, the number of non-zero elements in a sequence * Hamming window, a mathematical function used in signal processing * Hammond (other) * Ham (other) Ham is a cut of meat from an edible mammal's rear, usually from a pig. Ham or HAM may also refer to: Places Belgium * Ham, Belgium, a municipality France * Le Ham, Manche, a commune * Le Ham, Mayenne, a commune * Ham (Cergy), a village near C ...
{{disambiguation, surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Johnson Bound
In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications. Definition Let C be a ''q''-ary code of length n, i.e. a subset of \mathbb_q^n. Let d be the minimum distance of C, i.e. :d = \min_ d(x,y), where d(x,y) is the Hamming distance between x and y. Let C_q(n,d) be the set of all ''q''-ary codes with length n and minimum distance d and let C_q(n,d,w) denote the set of codes in C_q(n,d) such that every element has exactly w nonzero entries. Denote by , C, the number of elements in C. Then, we define A_q(n,d) to be the largest size of a code with length n and minimum distance d: : A_q(n,d) = \max_ , C, . Similarly, we define A_q(n,d,w) to be the largest size of a code in C_q(n,d,w): : A_q(n,d,w) = \max_ , C, . Theorem 1 (Johnson bound for A_q(n,d)): If d=2t+1, : A_q(n,d) \leq \frac. If d=2t+2, : A_q(n,d) \leq \frac. Theorem 2 (Joh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Singleton Bound
In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code C with block length n, size M and minimum distance d. It is also known as the Joshibound. proved by and even earlier by . Statement of the bound The minimum distance of a set C of codewords of length n is defined as d = \min_ d(x,y) where d(x,y) is the Hamming distance between x and y. The expression A_(n,d) represents the maximum number of possible codewords in a q-ary block code of length n and minimum distance d. Then the Singleton bound states that A_q(n,d) \leq q^. Proof First observe that the number of q-ary words of length n is q^n, since each letter in such a word may take one of q different values, independently of the remaining letters. Now let C be an arbitrary q-ary block code of minimum distance d. Clearly, all codewords c \in C are distinct. If we puncture the code by deleting the first d-1 letters of each code ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Bound
In mathematics and computer science, in the field of coding theory, the Hamming bound is a limit on the parameters of an arbitrary block code: it is also known as the sphere-packing bound or the volume bound from an interpretation in terms of packing balls in the Hamming metric into the space of all possible words. It gives an important limitation on the efficiency with which any error-correcting code can utilize the space in which its code words are embedded. A code that attains the Hamming bound is said to be a perfect code. Background on error-correcting codes An original message and an encoded version are both composed in an alphabet of ''q'' letters. Each code word contains ''n'' letters. The original message (of length ''m'') is shorter than ''n'' letters. The message is converted into an ''n''-letter codeword by an encoding algorithm, transmitted over a noisy channel, and finally decoded by the receiver. The decoding process interprets a garbled codeword, referred to as si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plotkin Bound
In the mathematics of coding theory, the Plotkin bound, named after Morris Plotkin, is a limit (or bound) on the maximum possible number of codewords in binary codes of given length ''n'' and given minimum distance ''d''. Statement of the bound A code is considered "binary" if the codewords use symbols from the binary alphabet \. In particular, if all codewords have a fixed length ''n'', then the binary code has length ''n''. Equivalently, in this case the codewords can be considered elements of vector space \mathbb_2^n over the finite field \mathbb_2. Let d be the minimum distance of C, i.e. :d = \min_ d(x,y) where d(x,y) is the Hamming distance between x and y. The expression A_(n,d) represents the maximum number of possible codewords in a binary code of length n and minimum distance d. The Plotkin bound places a limit on this expression. Theorem (Plotkin bound): i) If d is even and 2d > n , then : A_(n,d) \leq 2 \left\lfloor\frac\right\rfloor. ii) If d is odd and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gilbert–Varshamov Bound
In coding theory, the Gilbert–Varshamov bound (due to Edgar Gilbert and independently Rom Varshamov.) is a limit on the parameters of a (not necessarily linear) code. It is occasionally known as the Gilbert– Shannon–Varshamov bound (or the GSV bound), but the name "Gilbert–Varshamov bound" is by far the most popular. Varshamov proved this bound by using the probabilistic method for linear codes. For more about that proof, see Gilbert–Varshamov bound for linear codes. Statement of the bound Let :A_q(n,d) denote the maximum possible size of a ''q''-ary code C with length ''n'' and minimum Hamming distance ''d'' (a ''q''-ary code is a code over the field \mathbb_q of ''q'' elements). Then: :A_q(n,d) \geqslant \frac. Proof Let C be a code of length n and minimum Hamming distance d having maximal size: :, C, =A_q(n,d). Then for all x\in\mathbb_q^n , there exists at least one codeword c_x \in C such that the Hamming distance d(x,c_x) between x and c_x satisfies :d(x, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Coding Theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data. There are four types of coding: # Data compression (or ''source coding'') # Error control (or ''channel coding'') # Cryptographic coding # Line coding Data compression attempts to remove unwanted redundancy from the data from a source in order to transmit it more efficiently. For example, ZIP data compression makes data files smaller, for purposes such as to reduce Internet traffic. Data compression a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]