HOME





Eikonal Equation
An eikonal equation (from Greek εἰκών, image) is a non-linear first-order partial differential equation that is encountered in problems of wave propagation. The classical eikonal equation in geometric optics is a differential equation of the form where x lies in an open subset of \mathbb^n, n(x) is a positive function, \nabla denotes the gradient, and , \cdot , is the Euclidean norm. The function n is given and one seeks solutions u . In the context of geometric optics, the function n is the refractive index of the medium. More generally, an eikonal equation is an equation of the form where H is a function of 2n variables. Here the function H is given, and u is the solution. If H(x,y)= , y, - n(x) , then equation () becomes (). Eikonal equations naturally arise in the WKB method and the study of Maxwell's equations. Eikonal equations provide a link between physical (wave) optics and geometric (ray) optics. One fast computational algorithm t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ancient Greek
Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek Dark Ages, Dark Ages (), the Archaic Greece, Archaic or Homeric Greek, Homeric period (), and the Classical Greece, Classical period (). Ancient Greek was the language of Homer and of fifth-century Athens, fifth-century Athenian historians, playwrights, and Ancient Greek philosophy, philosophers. It has contributed many words to English vocabulary and has been a standard subject of study in educational institutions of the Western world since the Renaissance. This article primarily contains information about the Homeric Greek, Epic and Classical periods of the language, which are the best-attested periods and considered most typical of Ancient Greek. From the Hellenistic period (), Ancient Greek was followed by Koine Greek, which is regar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pierre-Louis Lions
Pierre-Louis Lions (; born 11 August 1956) is a French mathematician. He is known for a number of contributions to the fields of partial differential equations and the calculus of variations. He was a recipient of the 1994 Fields Medal and the 1991 Prize of the Philip Morris tobacco and cigarette company. Biography Lions entered the École normale supérieure in 1975, and received his doctorate from the University of Pierre and Marie Curie in 1979. He holds the position of Professor of '' Partial differential equations and their applications'' at the Collège de France in Paris as well as a position at École Polytechnique. Since 2014, he has also been a visiting professor at the University of Chicago. In 1979, Lions married Lila Laurenti, with whom he has one son. Lions' parents were Andrée Olivier and the renowned mathematician Jacques-Louis Lions, at the time a professor at the University of Nancy. Awards and honors In 1994, while working at the Paris Dauphine Universi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Basis
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane \mathbb^2 formed by the pairs of real numbers, the standard basis is formed by the vectors \mathbf_x = (1,0),\quad \mathbf_y = (0,1). Similarly, the standard basis for the three-dimensional space \mathbb^3 is formed by vectors \mathbf_x = (1,0,0),\quad \mathbf_y = (0,1,0),\quad \mathbf_z=(0,0,1). Here the vector e''x'' points in the ''x'' direction, the vector e''y'' points in the ''y'' direction, and the vector e''z'' points in the ''z'' direction. There are several common notations for standard-basis vectors, including , , , and . These vectors are sometimes written with a hat to emphasize their status as unit vectors (standard unit vectors). These vectors are a basis in the sense that any othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line. Most commonly, the ambient space is -dimensional Euclidean space, in which case the hyperplanes are the -dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion ( geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces. In non-Euclidean geometry, the ambient space might be the -dimensional sphere or hyperbolic space, or more generally a pseudo-Riemannian space form, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Method Of Characteristics
Method (, methodos, from μετά/meta "in pursuit or quest of" + ὁδός/hodos "a method, system; a way or manner" of doing, saying, etc.), literally means a pursuit of knowledge, investigation, mode of prosecuting such inquiry, or system. In recent centuries it more often means a prescribed process for completing a task. It may refer to: *Scientific method, a series of steps, or collection of methods, taken to acquire knowledge *Method (computer programming), a piece of code associated with a class or object to perform a task * Method (patent), under patent law, a protected series of steps or acts *Methodism, a Christian religious movement *Methodology, comparison or study and critique of individual methods that are used in a given discipline or field of inquiry *''Discourse on the Method'', a philosophical and mathematical treatise by René Descartes * ''Methods'' (journal), a scientific journal covering research on techniques in the experimental biological and medical sciences ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fast Sweeping Method
In applied mathematics, the fast sweeping method is a numerical method for solving boundary value problems of the Eikonal equation. : , \nabla u(\mathbf), = \frac 1 \text \mathbf \in \Omega : u(\mathbf) = 0 \text \mathbf \in \partial \Omega where \Omega is an open set in \mathbb^n, f(\mathbf) is a function with positive values, \partial \Omega is a well-behaved boundary of the open set and , \cdot, is the Euclidean norm. The fast sweeping method is an iterative method which uses upwind difference for discretization and uses Gauss–Seidel iterations with alternating sweeping ordering to solve the discretized Eikonal equation on a rectangular grid. The origins of this approach lie in the paper by Boue and Dupuis. Although fast sweeping methods have existed in control theory, it was first proposed for Eikonal equations by Hongkai Zhao, an applied mathematician at the University of California, Irvine The University of California, Irvine (UCI or UC Irvine) is a Public ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bellman–Ford Algorithm
The Bellman–Ford algorithm is an algorithm that computes shortest paths from a single source vertex (graph theory), vertex to all of the other vertices in a weighted digraph. It is slower than Dijkstra's algorithm for the same problem, but more versatile, as it is capable of handling graphs in which some of the edge weights are negative numbers.Lecture 14
stanford.edu
The algorithm was first proposed by , but is instead named after Richard Bellman and L. R. Ford Jr., Lester Ford Jr., who published it in #, 1958 and #, 1956, respectively. Edward F. Moore also published a variation of the algorithm in #, 1959, and for this reason it is also sometimes called the Bellman–Ford–Moore algorithm. Negative edge weights are found in various applications of graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dijkstra's Algorithm
Dijkstra's algorithm ( ) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later. Dijkstra's algorithm finds the shortest path from a given source node to every other node. It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of edges represent the distances between pairs of cities connected by a direct road, then Dijkstra's algorithm can be used to find the shortest route between one city and all other cities. A common application of shortest path algorithms is network routing protocols, most notably IS-IS (Intermediate System to Intermediate System) and OSPF (Open Shortest Path First). It is also employed as a subroutine in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Grid
A regular grid is a tessellation of ''n''-dimensional Euclidean space by Congruence_(geometry), congruent parallelepiped#Parallelotope, parallelotopes (e.g. bricks). Its opposite is Unstructured grid, irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods. Each cell in the grid can be addressed by index (i, j) in two dimensions or (i, j, k) in three dimensions, and each vertex (geometry), vertex has coordinates (i\cdot dx, j\cdot dy) in 2D or (i\cdot dx, j\cdot dy, k\cdot dz) in 3D for some real numbers ''dx'', ''dy'', and ''dz'' representing the g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Element Method
Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. Computers are usually used to perform the calculations required. With high-speed supercomputers, better solutions can be achieved and are often required to solve the largest and most complex problems. FEM is a general numerical method for solving partial differential equations in two- or three-space variables (i.e., some boundary value problems). There are also studies about using FEM to solve high-dimensional problems. To solve a problem, FEM subdivides a large system into smaller, simpler parts called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Causality
Causality is an influence by which one Event (philosophy), event, process, state, or Object (philosophy), object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cause is at least partly responsible for the effect, and the effect is at least partly dependent on the cause. The cause of something may also be described as the reason for the event or process. In general, a process can have multiple causes,Compare: which are also said to be ''causal factors'' for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future. Some writers have held that causality is metaphysics , metaphysically prior to notions of time and space. Causality is an abstraction that indicates how the world progresses. As such it is a basic concept; it is more apt to be an explanation of other concepts of progression than something to be explained by other more fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shortest Path Problem
In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length or distance of each segment. Definition The shortest path problem can be defined for graphs whether undirected, directed, or mixed. The definition for undirected graphs states that every edge can be traversed in either direction. Directed graphs require that consecutive vertices be connected by an appropriate directed edge. Two vertices are adjacent when they are both incident to a common edge. A path in an undirected graph is a sequence of vertices P = ( v_1, v_2, \ldots, v_n ) \in V \times V \times \cdots \times V ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]