HOME



picture info

Ehresmann Connection
In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action. Introduction A covariant derivative in differential geometry is a linear differential operator which takes the directional derivative of a section of a vector bundle in a covariant manner. It also allows one to formulate a notion of a parallel section of a bundle in the direction of a vector: a section ''s'' is parallel along a vector X if \nabla_X s = 0. So a covariant derivative provides at least two things: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pushforward (differential)
In differential geometry, pushforward is a linear approximation of smooth maps (formulating manifold) on tangent spaces. Suppose that \varphi\colon M\to N is a smooth map between smooth manifolds; then the differential of \varphi at a point x, denoted \mathrm d\varphi_x, is, in some sense, the best linear approximation of \varphi near x. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of M at x to the tangent space of N at \varphi(x), \mathrm d\varphi_x\colon T_xM \to T_N. Hence it can be used to ''push'' tangent vectors on M ''forward'' to tangent vectors on N. The differential of a map \varphi is also called, by various authors, the derivative or total derivative of \varphi. Motivation Let \varphi: U \to V be a Smooth function#Smooth functions on and between manifolds, smooth map from an Open subset#Euclidean space, open subset U of \R^m to an open subset V of \R^n. For an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Horizontal Bundle
In mathematics, the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle. More precisely, given a smooth fiber bundle \pi\colon E\to B, the vertical bundle VE and horizontal bundle HE are subbundles of the tangent bundle TE of E whose Whitney sum satisfies VE\oplus HE\cong TE. This means that, over each point e\in E, the fibers V_eE and H_eE form complementary subspaces of the tangent space T_eE. The vertical bundle consists of all vectors that are tangent to the fibers, while the horizontal bundle requires some choice of complementary subbundle. To make this precise, define the vertical space V_eE at e\in E to be \ker(d\pi_e). That is, the differential d\pi_e\colon T_eE\to T_bB (where b=\pi(e)) is a linear surjection whose kernel has the same dimension as the fibers of \pi. If we write F=\pi^(b), then V_eE consists of exactly the vectors in T_eE which are also tangent to F. The name is motivated by low-dimensional examples like the tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertical Bundle
In mathematics, the vertical bundle and the horizontal bundle are Vector bundle, vector bundles associated to a Fiber bundle#Differentiable fiber bundles, smooth fiber bundle. More precisely, given a smooth fiber bundle \pi\colon E\to B, the vertical bundle VE and horizontal bundle HE are Subbundle, subbundles of the tangent bundle TE of E whose Whitney sum satisfies VE\oplus HE\cong TE. This means that, over each point e\in E, the fibers V_eE and H_eE form complementary subspaces of the tangent space T_eE. The vertical bundle consists of all vectors that are tangent to the fibers, while the horizontal bundle requires some choice of complementary subbundle. To make this precise, define the vertical space V_eE at e\in E to be \ker(d\pi_e). That is, the differential d\pi_e\colon T_eE\to T_bB (where b=\pi(e)) is a linear surjection whose kernel has the same dimension as the fibers of \pi. If we write F=\pi^(b), then V_eE consists of exactly the vectors in T_eE which are also tangent t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Banach Manifold
In mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions. A further generalisation is to Fréchet manifolds, replacing Banach spaces by Fréchet spaces. On the other hand, a Hilbert manifold is a special case of a Banach manifold in which the manifold is locally modeled on Hilbert spaces. Definition Let X be a set. An atlas of class C^r, r \geq 0, on X is a collection of pairs (called charts) \left(U_i, \varphi_i\right), i \in I, such that # each U_i is a subset of X and the union of the U_i is the whole of X; # each \varphi_i is a bijection from U_i onto an open subset \varphi_i\left(U_i\right) of some Banach space E_i, and for any indices i \text j, \varphi_i\left(U_i \cap U_j\right) is open in E_i; # t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibered Manifold
In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion \pi : E \to B\, that is, a surjective differentiable mapping such that at each point y \in E the tangent mapping T_y \pi : T_ E \to T_B is surjective, or, equivalently, its rank equals \dim B. History In topology, the words fiber (Faser in German) and fiber space (gefaserter Raum) appeared for the first time in a paper by Herbert Seifert in 1932, but his definitions are limited to a very special case. The main difference from the present day conception of a fiber space, however, was that for Seifert what is now called the base space (topological space) of a fiber (topological) space E was not part of the structure, but derived from it as a quotient space of E. The first definition of fiber space is given by Hassler Whitney in 1935 under the name sphere space, but in 1940 Whitney changed the name to sphere bundle. The theory of fibered spaces, of which vector bun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Submersion (mathematics)
In mathematics, a submersion is a differentiable map between differentiable manifolds whose pushforward (differential), differential is everywhere surjective. It is a basic concept in differential topology, dual to that of an immersion (mathematics), immersion. Definition Let ''M'' and ''N'' be differentiable manifolds, and let f\colon M\to N be a differentiable map between them. The map is a submersion at a point p \in M if its pushforward (differential), differential :Df_p \colon T_p M \to T_N is a surjective linear map. In this case, is called a regular point of the map ; otherwise, is a critical point (mathematics), ''critical point''. A point q \in N is a regular value of if all points in the preimage f^(q) are regular points. A differentiable map that is a submersion at each point p \in M is called a submersion. Equivalently, is a submersion if its differential Df_p has rank (differential topology), constant rank equal to the dimension of . Some authors use the ter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a function , the codomain is the image of the function's domain . It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms '' injective'' and ''bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surjec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ehresmann Connection
In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action. Introduction A covariant derivative in differential geometry is a linear differential operator which takes the directional derivative of a section of a vector bundle in a covariant manner. It also allows one to formulate a notion of a parallel section of a bundle in the direction of a vector: a section ''s'' is parallel along a vector X if \nabla_X s = 0. So a covariant derivative provides at least two things: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curvature Form
In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algebra \mathfrak g, and ''P'' → ''B'' be a principal ''G''-bundle. Let ω be an Ehresmann connection on ''P'' (which is a \mathfrak g-valued one-form on ''P''). Then the curvature form is the \mathfrak g-valued 2-form on ''P'' defined by :\Omega=d\omega + omega \wedge \omega= D \omega. (In another convention, 1/2 does not appear.) Here d stands for exterior derivative, cdot \wedge \cdot/math> is defined in the article " Lie algebra-valued form" and ''D'' denotes the exterior covariant derivative. In other terms, :\,\Omega(X, Y)= d\omega(X,Y) + omega(X),\omega(Y)/math> where ''X'', ''Y'' are tangent vectors to ''P''. There is also another expression for Ω: if ''X'', ''Y'' are horizontal vector fields on ''P'', thenProof: \sigma\Omeg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Connection Form
In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan in the first half of the 20th century as part of, and one of the principal motivations for, his method of moving frames. The connection form generally depends on a choice of a coordinate frame, and so is not a tensorial object. Various generalizations and reinterpretations of the connection form were formulated subsequent to Cartan's initial work. In particular, on a principal bundle, a principal connection is a natural reinterpretation of the connection form as a tensorial object. On the other hand, the connection form has the advantage that it is a differential form defined on the differentiable manifold, rather than on an abstract principal bundle over it. Hence, despite their lack of tensoriality, connection forms continue to be used ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) \, dx is an example of a -form, and can be integrated over an interval ,b/math> contained in the domain of f: \int_a^b f(x)\,dx. Similarly, the expression f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz is a -form that can be integrated over a surface S: \int_S \left(f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz\right). The symbol \wedge denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form f(x,y,z) \, dx \wedge dy \wedge dz represents a volume element that can be integrated over a region of space. In general, a -form is an object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]