HOME
*





Earle–Hamilton Fixed-point Theorem
In mathematics, the Earle–Hamilton fixed point theorem is a result in geometric function theory giving sufficient conditions for a holomorphic mapping of an open domain in a complex Banach space into itself to have a fixed point. The result was proved in 1968 by Clifford Earle and Richard S. Hamilton by showing that, with respect to the Carathéodory metric on the domain, the holomorphic mapping becomes a contraction mapping to which the Banach fixed-point theorem can be applied. Statement Let ''D'' be a connected open subset of a complex Banach space ''X'' and let ''f'' be a holomorphic mapping of ''D'' into itself such that: *the image ''f''(''D'') is bounded in norm; *the distance between points ''f''(''D'') and points in the exterior of ''D'' is bounded below by a positive constant. Then the mapping ''f'' has a unique fixed point ''x'' in ''D'' and if ''y'' is any point in ''D'', the iterates ''f''''n''(''y'') converge to ''x''. Proof Replacing ''D'' by an ε-neighbourhood ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Function Theory
Geometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem. Topics in geometric function theory The following are some of the most important topics in geometric function theory: Conformal maps A conformal map is a function which preserves angles locally. In the most common case the function has a domain and range in the complex plane. More formally, a map, : f: U \rightarrow V\qquad with U,V \subset \mathbb^n is called conformal (or angle-preserving) at a point u_0 if it preserves oriented angles between curves through u_0 with respect to their orientation (i.e., not just the magnitude of the angle). Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature. Quasiconformal maps In mathematical complex analysis, a quasiconformal mapping, introduced by and named by , is a homeomorphism between plane domains whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Holomorphic Mapping
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard S
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include "Richie", "Dick", "Dickon", " Dickie", "Rich", "Rick", "Rico", "Ricky", and more. Richard is a common English, German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Catalan "Ricard" and the Italian "Riccardo", among others (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Andersen (other) * Richard Anderson (other) * Richard Cartwright (other) * Ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carathéodory Metric
In mathematics, the Carathéodory metric is a metric defined on the open unit ball of a complex Banach space that has many similar properties to the Poincaré metric of hyperbolic geometry. It is named after the Greek mathematician Constantin Carathéodory. Definition Let (''X'', , ,  , , ) be a complex Banach space and let ''B'' be the open unit ball in ''X''. Let Δ denote the open unit disc in the complex plane C, thought of as the Poincaré disc model for 2-dimensional real/1-dimensional complex hyperbolic geometry. Let the Poincaré metric ''ρ'' on Δ be given by :\rho (a, b) = \tanh^ \frac (thus fixing the curvature to be −4). Then the Carathéodory metric ''d'' on ''B'' is defined by :d (x, y) = \sup \. What it means for a function on a Banach space to be holomorphic is defined in the article on Infinite dimensional holomorphy. Properties * For any point ''x'' in ''B'', ::d(0, x) = \rho(0, \, x \, ). * ''d'' can also be given by the following formula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Contraction Mapping
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (''M'', ''d'') is a function ''f'' from ''M'' to itself, with the property that there is some real number 0 \leq k < 1 such that for all ''x'' and ''y'' in ''M'', :d(f(x),f(y)) \leq k\,d(x,y). The smallest such value of ''k'' is called the Lipschitz constant of ''f''. Contractive maps are sometimes called Lipschitzian maps. If the above condition is instead satisfied for ''k'' ≤ 1, then the mapping is said to be a . More generally, the idea of a contractive mapping can be defined for maps between metric spaces. Thus, if (''M'', ''d'') and (''N'', ''d) are two metric spaces, then f:M \rightarrow N is a contractive mapping if there is a constant 0 \leq k < 1 such that :
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Banach Fixed-point Theorem
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922. Statement ''Definition.'' Let (X, d) be a complete metric space. Then a map T : X \to X is called a contraction mapping on ''X'' if there exists q \in non-empty complete metric space with a contraction mapping T : X \to X. Then ''T'' admits a unique Fixed point (mathematics)">fixed-point x^* in ''X'' (i.e. T(x^*) = x^*). Furthermore, x^* can be found as follows: start with an arbitrary element x_0 \in X and define a sequence (x_n)_ by x_n = T(x_) for n \geq 1. Then \li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwarz Lemma
In mathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex analysis about holomorphic functions from the open unit disk to itself. The lemma is less celebrated than deeper theorems, such as the Riemann mapping theorem, which it helps to prove. It is, however, one of the simplest results capturing the rigidity of holomorphic functions. Statement Let \mathbf = \ be the open unit disk in the complex plane \mathbb centered at the origin, and let f : \mathbf\rightarrow \mathbb be a holomorphic map such that f(0) = 0 and , f(z), \leq 1 on \mathbf. Then , f(z), \leq , z, for all z \in \mathbf, and , f'(0), \leq 1. Moreover, if , f(z), = , z, for some non-zero z or , f'(0), = 1, then f(z) = az for some a \in \mathbb with , a, = 1.Theorem 5.34 in Proof The proof is a straightforward application of the maximum modulus principle on the function :g(z) = \begin \frac\, & \mbox z \neq 0 \\ f'(0) & \mbox z = 0, \end which is holomorphic on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brouwer Fixed Point Theorem
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a compact convex set to itself there is a point x_0 such that f(x_0)=x_0. The simplest forms of Brouwer's theorem are for continuous functions f from a closed interval I in the real numbers to itself or from a closed disk D to itself. A more general form than the latter is for continuous functions from a convex compact subset K of Euclidean space to itself. Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics. In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem, the invariance of dimension and the Borsuk–Ulam theorem. This gives it a place among the fundamental theorems of topology. The theorem is also used for proving ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Symmetric Domain
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space. The irreducible spaces arise in pairs as a non-compact space that, as Borel showed, can be embedded as an open subspace of its compact dual space. Harish Chandra showed that each non-compact space can be realized as a bounded symmetric domain in a complex vector space. The simplest case involves the groups SU(2), SU(1,1) and their common complexification SL(2,C). In this case the non-compact space is the unit disk, a homogeneous space for SU(1,1). It is a bounded domain in the complex plane C. The one-point compactific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bergman Metric
In differential geometry, the Bergman metric is a Hermitian metric that can be defined on certain types of complex manifold. It is so called because it is derived from the Bergman kernel, both of which are named after Stefan Bergman. Definition Let G \subset ^n be a domain and let K(z,w) be the Bergman kernel on ''G''. We define a Hermitian metric on the tangent bundle T_z^n by : g_ (z) := \frac \log K(z,z) , for z \in G. Then the length of a tangent vector \xi \in T_z^n is given by :\left\vert \xi \right\vert_:=\sqrt. This metric is called the Bergman metric on ''G''. The length of a (piecewise) ''C''1 curve \gamma \colon ,1\to ^n is then computed as : \ell (\gamma) = \int_0^1 \left\vert \frac(t) \right\vert_ dt . The distance d_G(p,q) of two points p,q \in G is then defined as : d_G(p,q):= \inf \ . The distance ''dG'' is called the ''Bergman distance''. The Bergman metric is in fact a positive definite matrix at each point if ''G'' is a bounded domain. More importantly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]