Eagle Station Grouplet
The Eagle Station group (abbreviated PES - Pallasite Eagle Station) is a set of pallasite meteorite specimen that don't fit into any of the other defined pallasite groups. In meteorite classification five meteorites have to be found, so they can be defined as their own group. Currently only five Eagle Station type meteorites have been found, which is just enough for a separate group. Naming and history The Eagle Station group is named after the Eagle Station meteorite, the type specimen of the group. It is in turned named after Eagle Station, Carroll County Kentucky where it was found. Description The Eagle Station group has a composition similar to Main group pallasites. Diagnostic differences are that the olivine is richer in iron and calcium. The group also has a distinct oxygen isotope signature. The meteoric iron is similar to the IIF iron meteorites. This might indicate that Eagle station group and IIF formed close to each other in the solar nebula. Parent body The t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Meteoric Iron
Meteoric iron, sometimes meteoritic iron, is a native metal and early-universe protoplanetary-disk remnant found in meteorites and made from the elements iron and nickel, mainly in the form of the mineral phases kamacite and taenite. Meteoric iron makes up the bulk of iron meteorites but is also found in other meteorites. Apart from minor amounts of telluric iron, meteoric iron is the only naturally occurring native metal of the element iron (in metallic form rather than in an ore) on the Earth's surface. Mineralogy The bulk of meteoric iron consists of taenite and kamacite. Taenite is a face-centered cubic and kamacite a body-centered cubic iron-nickel alloy. Meteoric iron can be distinguished from telluric iron by its microstructure and perhaps by its chemical composition also, since meteoritic iron contains more nickel and less carbon. Trace amounts of gallium and germanium in meteoric iron can be used to distinguish different meteorite types. The meteoric iron in stony iron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxygen Isotope
There are three known stable isotopes of oxygen (8O): , , and . Radioactive isotopes ranging from to have also been characterized, all short-lived. The longest-lived radioisotope is with a half-life of , while the shortest-lived isotope is with a half-life of (though the half-lives of the neutron-unbound and are still unknown). List of isotopes , - , , style="text-align:right" , 8 , style="text-align:right" , 3 , , [] , proton emission, 2p , , (3/2−) , , , - , , style="text-align:right" , 8 , style="text-align:right" , 4 , , , 2p , , 0+ , , , - , rowspan=2, , rowspan=2 style="text-align:right" , 8 , rowspan=2 style="text-align:right" , 5 , rowspan=2, , rowspan=2, , β+ () , , rowspan=2, (3/2−) , rowspan=2, , rowspan=2, , - , β+p () , , - , , style="text-align:right" , 8 , style="text-align:right" , 6 , , , β+ , , 0+ , , , - , , style="text-align:right" , 8 , style="text-align:right" , 7 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cold Bay Meteorite
Cold is the presence of low temperature, especially in the atmosphere. In common usage, cold is often a subjective perception. A lower bound to temperature is absolute zero, defined as 0.00K on the Kelvin scale, an absolute thermodynamic temperature scale. This corresponds to on the Celsius scale, on the Fahrenheit scale, and on the Rankine scale. Since temperature relates to the thermal energy held by an object or a sample of matter, which is the kinetic energy of the random motion of the particle constituents of matter, an object will have less thermal energy when it is colder and more when it is hotter. If it were possible to cool a system to absolute zero, all motion of the particles in a sample of matter would cease and they would be at complete rest in the classical sense. The object could be described as having zero thermal energy. Microscopically in the description of quantum mechanics, however, matter still has zero-point energy even at absolute zero, because ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mantle (geology)
A mantle is a layer inside a planetary body bounded below by a Planetary core, core and above by a Crust (geology), crust. Mantles are made of Rock (geology), rock or Volatiles, ices, and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone planetary differentiation, differentiation by density. All Terrestrial planet, terrestrial planets (including Earth), a number of Asteroid, asteroids, and some planetary Natural satellite, moons have mantles. Earth's mantle The Earth's mantle is a layer of Silicate minerals, silicate rock between the Crust (geology), crust and the Earth's outer core, outer core. Its mass of 4.01 × 1024 kg is 67% the mass of the Earth. It has a thickness of making up about 84% of Earth's volume. It is predominantly solid, but in Geologic time scale, geological time it behaves as a Viscosity, viscous fluid. Partial melting of the mantle at mid-ocean ridges produ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Planetary Core
A planetary core consists of the innermost layers of a planet. Cores may be entirely solid or entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. In the Solar System, core sizes range from about 20% (the Moon) to 85% of a planet's radius (Mercury). Gas giants also have cores, though the composition of these are still a matter of debate and range in possible composition from traditional stony/iron, to ice or to fluid metallic hydrogen. Gas giant cores are proportionally much smaller than those of terrestrial planets, though they can be considerably larger than the Earth's nevertheless; Jupiter's is 10–30 times heavier than Earth, and exoplanet HD149026 b may have a core 100 times the mass of the Earth. Planetary cores are challenging to study because they are impossible to reach by drill and there are almost no samples that are definitively from the core. Thus, they are studied via indirect techniques such as seismology, mineral physics, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trace Element
__NOTOC__ A trace element, also called minor element, is a chemical element whose concentration (or other measure of amount) is very low (a "trace amount"). They are classified into two groups: essential and non-essential. Essential trace elements are needed for many physiological and biochemical processes in both plants and animals. Not only do trace elements play a role in biological processes but they also serve as catalysts to engage in oxidation and reduction mechanisms. The exact definition depends on the field of science: * In analytical chemistry, a trace element is one whose average concentration is less than 100 parts per million (ppm) measured in the atomic count or less than 100 micrograms per gram. * In biochemistry, an essential trace element is a dietary element that is needed in very minute quantities for the proper growth, development, and physiology of the organism. The dietary elements or essential trace elements are those that are required to perform vit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar Nebula
The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed. This model, known as the nebular hypothesis, was first developed in the 18th century by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace. Its subsequent development has interwoven a variety of scientific disciplines including astronomy, chemistry, geology, physics, and planetary science. Since the dawn of the space age in the 1950s and the discovery of extrasolar planets in the 1990s, the model has been both challenged and refined to account for new observations. The Solar System has evolved considerably since its initial formation. Many moons have formed from circling discs of gas and dust around their parent planets, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
IIF Meteorites
In computing, IIf (an abbreviation for Immediate if) is a function in several editions of the Visual Basic programming language and ColdFusion Markup Language (CFML), and on spreadsheets that returns the second or third parameter based on the evaluation of the first parameter. It is an example of a conditional expression, which is similar to a conditional statement. Syntax The syntax of the IIf function is as follows: IIf(''expr'', ''truepart'', ''falsepart'') All three parameters are required: * ''expr'' is the expression that is to be evaluated. * ''truepart'' defines what the IIf function returns if the evaluation of ''expr'' returns true. * ''falsepart'' defines what the IIf function returns if the evaluation of ''expr'' returns false. Many languages have an operator to accomplish the same purpose, generally referred to as a conditional operator (or, less precisely, as a ternary operator); the best known is ?:, as used in C, C++, and related languages. Some of the prob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Meteoric Iron
Meteoric iron, sometimes meteoritic iron, is a native metal and early-universe protoplanetary-disk remnant found in meteorites and made from the elements iron and nickel, mainly in the form of the mineral phases kamacite and taenite. Meteoric iron makes up the bulk of iron meteorites but is also found in other meteorites. Apart from minor amounts of telluric iron, meteoric iron is the only naturally occurring native metal of the element iron (in metallic form rather than in an ore) on the Earth's surface. Mineralogy The bulk of meteoric iron consists of taenite and kamacite. Taenite is a face-centered cubic and kamacite a body-centered cubic iron-nickel alloy. Meteoric iron can be distinguished from telluric iron by its microstructure and perhaps by its chemical composition also, since meteoritic iron contains more nickel and less carbon. Trace amounts of gallium and germanium in meteoric iron can be used to distinguish different meteorite types. The meteoric iron in stony iron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Calcium
Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust, and the third most abundant metal, after iron and aluminium. The most common calcium compound on Earth is calcium carbonate, found in limestone and the fossilised remnants of early sea life; gypsum, anhydrite, fluorite, and apatite are also sources of calcium. The name derives from Latin ''calx'' "lime", which was obtained from heating limestone. Some calcium compounds were known to the ancients, though their chemistry was unknown until the seventeenth century. Pure calcium was isolated in 1808 via electrolysis of its oxide by Humphry Davy, who named the element. Calcium compounds are widely used in many industries: in foods and pharma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |