E-dense Semigroup
   HOME
*





E-dense Semigroup
__NOTOC__ In abstract algebra, an ''E''-dense semigroup (also called an ''E''-inversive semigroup) is a semigroup in which every element ''a'' has at least one weak inverse ''x'', meaning that ''xax'' = ''x''. The notion of weak inverse is (as the name suggests) weaker than the notion of inverse used in a regular semigroup (which requires that ''axa''=''a''). The above definition of an ''E''-inversive semigroup ''S'' is equivalent with any of the following: * for every element ''a'' ∈ ''S'' there exists another element ''b'' ∈ ''S'' such that ''ab'' is an idempotent. * for every element ''a'' ∈ ''S'' there exists another element ''c'' ∈ ''S'' such that ''ca'' is an idempotent. This explains the name of the notion as the set of idempotents of a semigroup ''S'' is typically denoted by ''E''(''S''). The concept of ''E''-inversive semigroup was introduced by Gabriel Thierrin in 1955. Some authors use ''E''-dense to refer only to ''E''-inversive semigroups in which the idempote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Inverse
In mathematics, the term weak inverse is used with several meanings. Theory of semigroups In the theory of semigroups, a weak inverse of an element ''x'' in a semigroup is an element ''y'' such that . If every element has a weak inverse, the semigroup is called an ''E''-inversive or ''E''-dense semigroup. An ''E''-inversive semigroup may equivalently be defined by requiring that for every element , there exists such that and are idempotents. An element ''x'' of ''S'' for which there is an element ''y'' of ''S'' such that is called regular. A regular semigroup is a semigroup in which every element is regular. This is a stronger notion than weak inverse. Every regular semigroup is ''E''-inversive, but not vice versa. If every element ''x'' in ''S'' has a unique inverse ''y'' in ''S'' in the sense that and then ''S'' is called an inverse semigroup. Category theory In category theory, a weak inverse of an object ''A'' in a monoidal category ''C'' with monoidal product ⊗ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Semigroup
In mathematics, a regular semigroup is a semigroup ''S'' in which every element is regular, i.e., for each element ''a'' in ''S'' there exists an element ''x'' in ''S'' such that . Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations. History Regular semigroups were introduced by J. A. Green in his influential 1951 paper "On the structure of semigroups"; this was also the paper in which Green's relations were introduced. The concept of ''regularity'' in a semigroup was adapted from an analogous condition for rings, already considered by John von Neumann. It was Green's study of regular semigroups which led him to define his celebrated relations. According to a footnote in Green 1951, the suggestion that the notion of regularity be applied to semigroups was first made by David Rees. The term inversive semigroup (French: demi-groupe inversif) was historically used as synonym in the pap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Idempotent
Idempotence (, ) is the property of certain operation (mathematics), operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projector (linear algebra), projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + ''wikt:potence, potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gabriel Thierrin
In Abrahamic religions (Judaism, Christianity and Islam), Gabriel (); Greek: grc, Γαβριήλ, translit=Gabriḗl, label=none; Latin: ''Gabriel''; Coptic: cop, Ⲅⲁⲃⲣⲓⲏⲗ, translit=Gabriêl, label=none; Amharic: am, ገብርኤል, translit=Gabrəʾel, label=none; arc, ܓ݁ܰܒ݂ܪܺܝܐܝܶܠ, translit=Gaḇrīʾēl; ar, جِبْرِيل, Jibrīl, also ar, جبرائيل, Jibrāʾīl or ''Jabrāʾīl'', group="N" is an archangel with power to announce God's will to men. He is mentioned in the Hebrew Bible, the New Testament, and the Quran. Many Christian traditions — including Anglicanism, Eastern Orthodoxy, and Roman Catholicism — revere Gabriel as a saint. In the Hebrew Bible, Gabriel appears to the prophet Daniel to explain his visions (Daniel 8:15–26, 9:21–27). The archangel also appears in the Book of Enoch and other ancient Jewish writings not preserved in Hebrew. Alongside the archangel Michael, Gabriel is described as the guardian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semigroup Forum
Semigroup Forum (print , electronic ) is a mathematics research journal published by Springer. The journal serves as a platform for the speedy and efficient transmission of information on current research in semigroup theory. Coverage in the journal includes: algebraic semigroups, topological semigroups, partially ordered semigroups, semigroups of measures and harmonic analysis on semigroups, transformation semigroups, and applications of semigroup theory to other disciplines such as ring theory, category theory, automata, and logic. Semigroups of operators were initially considered off-topic, but began being included in the journal in 1985. Contents Semigroup Forum features survey and research articles. It also contains research announcements, which describe new results, mostly without proofs, of full length papers appearing elsewhere as well as short notes, which detail such information as new proofs, significant generalizations of known facts, comments on unsolved problems, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subsemigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semigroup With Zero
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eventually Regular Semigroup
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ''ab'' = ''ba'' for all elements ''a'' and ''b'' in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively. In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Periodic Semigroup
In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups. Structure The monogenic semigroup generated by the singleton set is denoted by \langle a \rangle . The set of elements of \langle a \rangle is . There are two possibilities for the monogenic semigroup \langle a \rangle : * ''a'' ''m'' = ''a'' ''n'' ⇒ ''m'' = ''n''. * There exist ''m'' ≠ ''n'' such that ''a'' ''m'' = ''a'' ''n''. In the former case \langle a \rangle is isomorphic to the semigroup ( , + ) of natural numbers under addition. In such a case, \langle a \rangle is an ''infinite monogenic semigroup'' and the element ''a'' is said to have ''infinite order''. It is sometimes called the ''free monogenic semigroup'' because it is also a free semigroup with one generator. In the latter case let ''m'' be the smallest positive integer such that ''a'' ''m'' = ''a'' ''x'' for some positive integer ''x'' ≠ ''m'', and let '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Semigroup
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album ''Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb A nonfinite verb is a derivative form of a verb unlike finite verbs. Accordingly, nonfinite verb forms are inflected for neither number nor person, and they cannot perform action as the root ... {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]