HOME
*



picture info

Dyck Language
In the theory of formal languages of computer science, mathematics, and linguistics, a Dyck word is a balanced string of square brackets and The set of Dyck words forms the Dyck language. Dyck words and language are named after the mathematician Walther von Dyck. They have applications in the parsing of expressions that must have a correctly nested sequence of brackets, such as arithmetic or algebraic expressions. Formal definition Let \Sigma = \ be the alphabet consisting of the symbols and Let \Sigma^ denote its Kleene closure. The Dyck language is defined as: : \. Context-free grammar It may be helpful to define the Dyck language via a context-free grammar in some situations. The Dyck language is generated by the context-free grammar with a single non-terminal , and the production: : That is, ''S'' is either the empty string () or is " , an element of the Dyck language, the matching ", and an element of the Dyck language. An alternative context-free grammar for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dyck Lattice D4
Dyck is a form of the Dutch surname van Dijck, (van) Dijck, which is also common among Russian Mennonites. Notable surnames * Anthony van Dyck (1599–1641), Flemish artist * Cornelius Van Allen Van Dyck (1818–1895), American missionary * Howard Dyck (born 1942), Canadian conductor * Lillian Dyck (born 1945), Canadian senator * Lionel Dyck (born 1944), Rhodesian-born mercenary * Paul Dyck (born 1971), Canadian ice hockey player * Peter George Dyck (1946–2020), Canadian politician * Rand Dyck (born 1943), Canadian professor * Walther von Dyck (1856–1934), German mathematician Fictional Dycks * Elsie Dyck, fictional Mennonite writer in Andrew Unger's novel ''Once Removed'' * Harry Dyck, recurring character in ''The Daily Bonnet'' * Noah and Anita Dyck, fictional Mennonite couple in the television show ''Letterkenny'' * A common misspelling of the movie ''Dick (film), Dick'' since the movie's box art title and logo on the trailer have the hands of a person pointed out to shape ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a relation on a set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Each partial order as well as each equivalence relation needs to be transitive. Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy, too, is an ancestor of Carrie. On the other hand, "is the birth parent of" is not a transitive relation, because if Alice is the birth parent of Brenda, and Brenda is the birth parent of Claire, then this does not imply that Alice is the birth parent of Claire. What is more, it is antitransitive: Alice can ''never'' be the birth parent of Claire. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalan Number
In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan (1814–1894). The ''n''th Catalan number can be expressed directly in terms of binomial coefficients by :C_n = \frac = \frac = \prod\limits_^\frac \qquad\textn\ge 0. The first Catalan numbers for ''n'' = 0, 1, 2, 3, ... are :1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ... . Properties An alternative expression for ''C''''n'' is :C_n = - for n\ge 0, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that ''C''''n'' is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a proof of the correctness of the formula. The Catalan numbers satisfy the recurrence relations :C_0 = 1 \quad \text \quad C_=\sum_^C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Narayana Number
In combinatorics, the Narayana numbers \operatorname(n, k), n \in \mathbb^+, 1 \le k \le n form a triangular array of natural numbers, called the Narayana triangle, that occur in various counting problems. They are named after Canadian mathematician T. V. Narayana (1930–1987). Formula The Narayana numbers can be expressed in terms of binomial coefficients: : \operatorname(n, k) = \frac Numerical values The first eight rows of the Narayana triangle read: Combinatorial interpretations Dyck words An example of a counting problem whose solution can be given in terms of the Narayana numbers \operatorname(n, k), is the number of words containing pairs of parentheses, which are correctly matched (known as Dyck words) and which contain distinct nestings. For instance, \operatorname(4, 2) = 6, since with four pairs of parentheses, six sequences can be created which each contain two occurrences the sub-pattern : (()(())) ((()())) ((())()) ()((())) (())(()) ((( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complexity Class
In computational complexity theory, a complexity class is a set (mathematics), set of computational problems of related resource-based computational complexity, complexity. The two most commonly analyzed resources are time complexity, time and space complexity, memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time complexity, time or space complexity, memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P (complexity), P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. Counting problem (complexity), counting problems and function problems) and using other models of computation (e.g. probabilis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Language
In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expressions engines, which are augmented with features that allow recognition of non-regular languages). Alternatively, a regular language can be defined as a language recognized by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by Type-3 grammars. Formal definition The collection of regular languages over an alphabet Σ is defined recursively as follows: * The empty language Ø is a regular language. * For each ''a'' ∈ Σ (''a'' belongs to Σ), the singleton language is a regular language. * If ''A'' is a regular language, ''A'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Context-free Language
In formal language theory, a context-free language (CFL) is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Background Context-free grammar Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language. Automata The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct. Examples An example context-free language is L = \, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chomsky–Schützenberger Representation Theorem
In formal language theory, the Chomsky–Schützenberger representation theorem is a theorem derived by Noam Chomsky and Marcel-Paul Schützenberger about representing a given context-free language in terms of two simpler languages. These two simpler languages, namely a regular language and a Dyck language, are combined by means of an intersection and a homomorphism. A few notions from formal language theory are in order. A context-free language is '' regular'', if it can be described by a regular expression, or, equivalently, if it is accepted by a finite automaton. A homomorphism is based on a function h which maps symbols from an alphabet \Gamma to words over another alphabet \Sigma; If the domain of this function is extended to words over \Gamma in the natural way, by letting h(xy)=h(x)h(y) for all words x and y, this yields a ''homomorphism'' h:\Gamma^*\to \Sigma^*. A ''matched alphabet'' T \cup \overline T is an alphabet with two equal-sized sets; it is convenient to think ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bicyclic Semigroup
In mathematics, the bicyclic semigroup is an algebraic object important for the structure theory of semigroups. Although it is in fact a monoid, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the syntactic monoid describing the Dyck language of balanced pairs of parentheses. Thus, it finds common applications in combinatorics, such as describing binary trees and associative algebras. History The first published description of this object was given by Evgenii Lyapin in 1953. Alfred H. Clifford and Gordon Preston claim that one of them, working with David Rees, discovered it independently (without publication) at some point before 1943. Construction There are at least three standard ways of constructing the bicyclic semigroup, and various notations for referring to it. Lyapin called it ''P''; Clifford and Preston used \mathcal; and most recent papers have tended to use ''B''. This article will use the modern style throughout. From a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syntactic Monoid
In mathematics and computer science, the syntactic monoid M(L) of a formal language L is the smallest monoid that recognizes the language L. Syntactic quotient The free monoid on a given set is the monoid whose elements are all the strings of zero or more elements from that set, with string concatenation as the monoid operation and the empty string as the identity element. Given a subset S of a free monoid M, one may define sets that consist of formal left or right inverses of elements in S. These are called quotients, and one may define right or left quotients, depending on which side one is concatenating. Thus, the right quotient of S by an element m from M is the set :S \ / \ m=\. Similarly, the left quotient is :m \setminus S=\. Syntactic equivalence The syntactic quotient induces an equivalence relation on M, called the syntactic relation, or syntactic equivalence (induced by S). The ''right syntactic equivalence'' is the equivalence relation :s \sim_S t \ \Leftrigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]