Downside Risk
   HOME
*





Downside Risk
Downside risk is the financial risk associated with losses. That is, it is the risk of the actual return being below the expected return, or the uncertainty about the magnitude of that difference. Risk measures typically quantify the downside risk, whereas the standard deviation (an example of a deviation risk measure) measures both the upside and downside risk. Specifically, downside risk can be measured either with downside beta or by measuring lower semi-deviation. The statistic ''below-target semi-deviation'' or simply ''target semi-deviation'' (TSV) has become the industry standard. History Downside risk was first modeled by Roy (1952), who assumed that an investor's goal was to minimize his/her risk. This mean-semivariance, or downside risk, model is also known as “safety-first” technique, and only looks at the lower standard deviations of expected returns which are the potential losses. This is about the same time Harry Markowitz was developing mean-variance theory. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Financial Risk
Financial risk is any of various types of risk associated with financing, including financial transactions that include company loans in risk of default. Often it is understood to include only downside risk, meaning the potential for financial loss and uncertainty about its extent. A science has evolved around managing market and financial risk under the general title of modern portfolio theory initiated by Dr. Harry Markowitz in 1952 with his article, "Portfolio Selection". In modern portfolio theory, the variance (or standard deviation) of a portfolio is used as the definition of risk. Types According to Bender and Panz (2021), financial risks can be sorted into five different categories. In their study, they apply an algorithm-based framework and identify 193 single financial risk types, which are sorted into the five categories market risk, liquidity risk, credit risk, business risk and investment risk. Market risk The four standard market risk factors are equity ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Risk Measure
In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions, such as banks and insurance companies, acceptable to the regulator. In recent years attention has turned towards convex and coherent risk measurement. Mathematically A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents portfolio returns. The common notation for a risk measure associated with a random variable X is \rho(X). A risk measure \rho: \mathcal \to \mathbb \cup \ should have certain properties: ; Normalized : \rho(0) = 0 ; Translative : \mathrm\; a \in \mathbb \; \mathrm \; Z \in \mathcal ,\;\mathrm\; \rho(Z + a) = \rho(Z) - a ; Monotone : \mathrm\; Z_1,Z_2 \in \mathcal \;\mathrm\; Z_1 \leq Z_2 ,\; \mathrm \; \rho(Z_2) \leq \rho(Z_1) Set-valued In a situation w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Deviation
In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. Standard deviation may be abbreviated SD, and is most commonly represented in mathematical texts and equations by the lower case Greek letter σ (sigma), for the population standard deviation, or the Latin letter '' s'', for the sample standard deviation. The standard deviation of a random variable, sample, statistical population, data set, or probability distribution is the square root of its variance. It is algebraically simpler, though in practice less robust, than the average absolute deviation. A useful property of the standard deviation is that, unlike the variance, it is expressed in the same unit as the data. The standard deviation of a popu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deviation Risk Measure
In financial mathematics, a deviation risk measure is a function to quantify financial risk (and not necessarily downside risk) in a different method than a general risk measure. Deviation risk measures generalize the concept of standard deviation. Mathematical definition A function D: \mathcal^2 \to ,+\infty/math>, where \mathcal^2 is the L2 space of random variables (random portfolio returns), is a deviation risk measure if # Shift-invariant: D(X + r) = D(X) for any r \in \mathbb # Normalization: D(0) = 0 # Positively homogeneous: D(\lambda X) = \lambda D(X) for any X \in \mathcal^2 and \lambda > 0 # Sublinearity: D(X + Y) \leq D(X) + D(Y) for any X, Y \in \mathcal^2 # Positivity: D(X) > 0 for all nonconstant ''X'', and D(X) = 0 for any constant ''X''. Relation to risk measure There is a one-to-one relationship between a deviation risk measure ''D'' and an expectation-bounded risk measure ''R'' where for any X \in \mathcal^2 * D(X) = R(X - \mathbb * R(X) = D(X) - \mathbb /math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Downside Beta
In investing, downside beta is the beta that measures a stock's association with the overall stock market (risk) only on days when the market’s return is negative. Downside beta was first proposed by Roy 1952 and then popularized in an investment book bMarkowitz (1959) Formula It is common to measure r_i and r_m as the excess returns to security i and the market m, u_m as the average market excess return, and Cov and Var as the covariance and variance operators, Downside beta is :\beta^-=\frac, while upside beta is given by this expression with the direction of the inequalities reversed. Therefore, \beta^- can be estimated with a regression of the excess return of security i on the excess return of the market, conditional on (excess) market return being negative. Downside beta vs. beta Downside beta was once hypothesized to have greater explanatory power than standard beta in bearish markets. As such, it would have been a better measure of risk than ordinary beta. Use in Equi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harry Markowitz
Harry Max Markowitz (born August 24, 1927) is an American economist who received the 1989 John von Neumann Theory Prize and the 1990 Nobel Memorial Prize in Economic Sciences. Markowitz is a professor of finance at the Rady School of Management at the University of California, San Diego (UCSD). He is best known for his pioneering work in modern portfolio theory, studying the effects of asset risk, return, correlation and diversification on probable investment portfolio returns. Biography Harry Markowitz was born to a Jewish family, the son of Morris and Mildred Markowitz.Harry M. Markowitz Autobiography The Nobel Prizes 1990, Editor Tore Frängsmyr, obel Foundation Stockholm, 1991 During high school, Markowitz developed an interest in physics and philosophy, in particular the ideas of David Hume, an interest he continued to follow during his undergraduate years at the University of Chicago. After receiving his Ph.B. in Liberal Arts, Markowitz decided to continue his st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beta (finance)
In finance, the beta (β or market beta or beta coefficient) is a measure of how an individual asset moves (on average) when the overall stock market increases or decreases. Thus, beta is a useful measure of the contribution of an individual asset to the risk of the market portfolio when it is added in small quantity. Thus, beta is referred to as an asset's non-diversifiable risk, its systematic risk, market risk, or hedge ratio. Beta is ''not'' a measure of idiosyncratic risk. Interpretation of values By definition, the value-weighted average of all market-betas of all investable assets with respect to the value-weighted market index is 1. If an asset has a beta above (below) 1, it indicates that its return moves more (less) than 1-to-1 with the return of the market-portfolio, on average. In practice, few stocks have negative betas (tending to go up when the market goes down). Most stocks have betas between 0 and 3. Treasury bills (like most fixed income instruments) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Upside Risk
In investing, upside risk is the uncertain possibility of gain. It is measured by upside beta. An alternative measure of upside risk is the upper semi-deviation. Upside risk is calculated using data only from days when the benchmark (for example S&P 500 Index) has gone up. Upside risk focuses on uncertain positive returns rather than negative returns. For this reason, upside risk, while a measure of unpredictability of the extent of gains, is not a “risk” in the sense of a possibility of adverse outcomes. Upside risk vs. Capital Asset Pricing Model Looking at upside risk and downside risk separately provides much more useful information to investors than does only looking at the single Capital Asset Pricing Model (CAPM) beta. The comparison of upside to downside risk is necessary because “modern portfolio theory measures risk in terms of standard deviation of asset returns, which treats both positive and negative deviations from expected returns as risk.” In other words, reg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Capital Asset Pricing Model
In finance, the capital asset pricing model (CAPM) is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified portfolio. The model takes into account the asset's sensitivity to non-diversifiable risk (also known as systematic risk or market risk), often represented by the quantity beta (β) in the financial industry, as well as the expected return of the market and the expected return of a theoretical risk-free asset. CAPM assumes a particular form of utility functions (in which only first and second moments matter, that is risk is measured by variance, for example a quadratic utility) or alternatively asset returns whose probability distributions are completely described by the first two moments (for example, the normal distribution) and zero transaction costs (necessary for diversification to get rid of all idiosyncratic risk). Under these conditions, CAPM shows that the cost of eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather conditions at some future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc. Introduction A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by \Omega, is the set of all possible outcomes of a random phe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Risk
In simple terms, risk is the possibility of something bad happening. Risk involves uncertainty about the effects/implications of an activity with respect to something that humans value (such as health, well-being, wealth, property or the environment), often focusing on negative, undesirable consequences. Many different definitions have been proposed. The international standard definition of risk for common understanding in different applications is “effect of uncertainty on objectives”. The understanding of risk, the methods of assessment and management, the descriptions of risk and even the definitions of risk differ in different practice areas (business, economics, environment, finance, information technology, health, insurance, safety, security etc). This article provides links to more detailed articles on these areas. The international standard for risk management, ISO 31000, provides principles and generic guidelines on managing risks faced by organizations. Definitions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]