Distinguishable (other)
   HOME
*





Distinguishable (other)
Distinguishable may refer to: *Distinguishing attack in cryptography *Identical particles in statistical mechanics *Clear enough to be recognized or identified as different. See also * Distinction (other) Distinction, distinct or distinctive may refer to: * Distinction (philosophy), the recognition of difference * Formal distinction * Distinction (law), a principle in international law governing the legal use of force in an armed conflict * Dist ...
{{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distinguishing Attack
In cryptography, a distinguishing attack is any form of cryptanalysis on data encrypted by a cipher that allows an attacker to distinguish the encrypted data from random data. Modern symmetric-key ciphers are specifically designed to be immune to such an attack. In other words, modern encryption schemes are pseudorandom permutations and are designed to have ciphertext indistinguishability. If an algorithm is found that can distinguish the output from random faster than a brute force search, then that is considered a break of the cipher. A similar concept is the known-key distinguishing attack, whereby an attacker knows the key and can find a structural property in cipher, where the transformation from plaintext to ciphertext is not random. Overview To prove that a cryptographic function is safe, it is often compared to a random oracle. If a function would be a random oracle, then an attacker is not able to predict any of the output of the function. If a function is distinguisha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identical Particles
In quantum mechanics, identical particles (also called indistinguishable or indiscernible particles) are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, elementary particles (such as electrons), composite subatomic particles (such as atomic nuclei), as well as atoms and molecules. Quasiparticles also behave in this way. Although all known indistinguishable particles only exist at the quantum scale, there is no exhaustive list of all possible sorts of particles nor a clear-cut limit of applicability, as explored in quantum statistics. There are two main categories of identical particles: bosons, which can share quantum states, and fermions, which cannot (as described by the Pauli exclusion principle). Examples of bosons are photons, gluons, phonons, helium-4 nuclei and all mesons. Examples of fermions are electrons, neutrinos, quarks, protons, neutrons, and helium-3 nuclei. The fact that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]