Dinostratus' Theorem
   HOME
*



picture info

Dinostratus' Theorem
In geometry, Dinostratus' theorem describes a property of Hippias' trisectrix, that allows for the squaring the circle if the trisectrix can be used in addition to straightedge and compass. The theorem is named after the Greek mathematician Dinostratus who proved it around 350 BC when he attempted to square the circle himself. The theorem states that Hippias' trisectrix divides one of the sides of its associated square in a ratio of 2:\pi . Arbitrary points on Hippias' trisectrix itself however cannot be constructed by circle and compass alone but only a dense subset. In particular it is not possible to construct the exact point where the trisectrix meets the edge of the square. For this reason Dinostratus' approach is not considered a "real" solution of the classical problem of squaring the circle. References * Thomas Little Heath Sir Thomas Little Heath (; 5 October 1861 – 16 March 1940) was a British civil servant, mathematician, classical scholar, historian of anci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratrix Des Dinostratos
In geometry, a quadratrix () is a curve having ordinates which are a measure of the area (or quadrature) of another curve. The two most famous curves of this class are those of Dinostratus and E. W. Tschirnhaus, which are both related to the circle. Quadratrix of Dinostratus The quadratrix of Dinostratus (also called the ''quadratrix of Hippias'') was well known to the ancient Greek geometers, and is mentioned by Proclus, who ascribes the invention of the curve to a contemporary of Socrates, probably Hippias of Elis. Dinostratus, a Greek geometer and disciple of Plato, discussed the curve, and showed how it effected a mechanical solution of squaring the circle. Pappus, in his ''Collections'', treats its history, and gives two methods by which it can be generated. # Let a helix be drawn on a right circular cylinder; a screw surface is then obtained by drawing lines from every point of this spiral perpendicular to its axis. The orthogonal projection of a section of this surface b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratrix Of Hippias
The quadratrix or trisectrix of Hippias (also quadratrix of Dinostratus) is a curve which is created by a uniform motion. It is one of the oldest examples for a kinematic curve (a curve created through motion). Its discovery is attributed to the Greek sophist Hippias of Elis, who used it around 420 BC in an attempt to solve the angle trisection problem (hence trisectrix). Later around 350 BC Dinostratus used it in an attempt to solve the problem of squaring the circle (hence quadratrix). Definition Consider a square ABCD, and an inscribed quarter circle arc centered at A with radius equal to the side of the square. Let E be a point that travels with a constant angular velocity along the arc from D to B, and let F be a point that travels simultaneously with a constant velocity from D to ABCD along line segment \overline, so that E and F start at the same time at D and arrive at the same time at B and A. Then the quadratrix is defined as the locus of the intersection of line seg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Squaring The Circle
Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square with the area of a circle by using only a finite number of steps with a compass and straightedge. The difficulty of the problem raised the question of whether specified axioms of Euclidean geometry concerning the existence of lines and circles implied the existence of such a square. In 1882, the task was proven to be impossible, as a consequence of the Lindemann–Weierstrass theorem, which proves that pi (\pi) is a transcendental number. That is, \pi is not the root of any polynomial with rational coefficients. It had been known for decades that the construction would be impossible if \pi were transcendental, but that fact was not proven until 1882. Approximate constructions with any given non-perfect accuracy exist, and many such constructions have been found. Despite the proof that it is impossible, attempts to square the circle have been common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dinostratus
Dinostratus ( el, Δεινόστρατος; c. 390 – c. 320 BCE) was a Greece, Greek mathematician and geometer, and the brother of Menaechmus. He is known for using the quadratrix to solve the problem of squaring the circle. Life and work Dinostratus' chief contribution to mathematics was his solution to the problem of squaring the circle. To solve this problem, Dinostratus made use of the trisectrix of Hippias, for which he proved a special property (Dinostratus' theorem) that allowed him the squaring of the circle. Due to his work the trisectrix later became known as the quadratrix of Dinostratus as well. Although Dinostratus solved the problem of squaring the circle, he did not do so using Compass and straightedge constructions, ruler and compass alone, and so it was clear to the Greeks that his solution violated the foundational principles of their mathematics. Over 2,200 years later Ferdinand von Lindemann would prove that it is impossible to square a circle using straigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Little Heath
Sir Thomas Little Heath (; 5 October 1861 – 16 March 1940) was a British civil servant, mathematician, classical scholar, historian of ancient Greek mathematics, translator, and mountaineer. He was educated at Clifton College. Heath translated works of Euclid of Alexandria, Apollonius of Perga, Aristarchus of Samos, and Archimedes of Syracuse into English. Life Heath was born in Barnetby-le-Wold, Lincolnshire, England,being the third son of a farmer, Samuel Heath. He was educated at Caistor Grammar School and Clifton College before entering Trinity College, Cambridge, where he was awarded an ScD in 1896 and became an Honorary Fellow in 1920.He got first class honours in both the classical tripos and mathematical tripos and was the twelfth wrangler in 1882. In 1884 he took the Civil Service examination and became an Assistant Secretary to the Treasury, finally becoming Joint Permanent Secretary to the Treasury and auditor of the Civil List in 1913. He held the position till ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]