Diffuse Series
   HOME
*



picture info

Diffuse Series
The diffuse series is a series of spectral lines in the atomic emission spectrum caused when electrons jump between the lowest p orbital and d orbitals of an atom. The total orbital angular momentum changes between 1 and 2. The spectral lines include some in the visible light, and may extend into ultraviolet or near infrared. The lines get closer and closer together as the frequency increases never exceeding the series limit. The diffuse series was important in the development of the understanding of electron shells and subshells in atoms. The diffuse series has given the letter ''d'' to the d atomic orbital or subshell. The diffuse series has values given by v=\frac-\frac with \ m=2,3,4,5,6,... The series is caused by transitions from the lowest P state to higher energy D orbitals. One terminology to identify the lines is: 1P-mD But note that 1P just means the lowest P state in the valence shell of an atom and that the modern designation would start at 2P, and is larger for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Line
A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules. These "fingerprints" can be compared to the previously collected ones of atoms and molecules, and are thus used to identify the atomic and molecular components of stars and planets, which would otherwise be impossible. Types of line spectra Spectral lines are the result of interaction between a quantum system (usually atoms, but sometimes molecules or atomic nuclei) and a single photon. When a photon has about the right amount of energy (which is connected to its frequency) to allow a change in the energy state of the system (in the case of an atom this is usually an electron changing orbitals), the photon is absorbed. Then the energy will be spontaneously re-emitted, either as one photon at the same frequenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sodium Diffuse Series With Different Origins
Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is 23Na. The free metal does not occur in nature, and must be prepared from compounds. Sodium is the sixth most abundant element in the Earth's crust and exists in numerous minerals such as feldspars, sodalite, and halite (NaCl). Many salts of sodium are highly water-soluble: sodium ions have been leached by the action of water from the Earth's minerals over eons, and thus sodium and chlorine are the most common dissolved elements by weight in the oceans. Sodium was first isolated by Humphry Davy in 1807 by the electrolysis of sodium hydroxide. Among many other useful sodium compounds, sodium hydroxide (lye) is used in soap manufacture, and sodium chloride (edible salt) is a de-icing agent and a nutrient for animals including human ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO) In simpler terms, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Historically, spectroscopy originated as the study of the wavelength dependence of the absorption by gas phase matter of visible light dispersed by a prism. Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of astronomy, chemistry, materials science, and physics, allowing the composition, physical structure and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Friedrich Hund
Friedrich Hermann Hund (4 February 1896 – 31 March 1997) was a German physicist from Karlsruhe known for his work on atoms and molecules. Scientific career Hund worked at the Universities of Rostock, Leipzig, Jena, Frankfurt am Main, and Göttingen. Hund worked with such prestigious physicists as Schrödinger, Dirac, Heisenberg, Max Born, and Walter Bothe. At that time, he was Born's assistant, working with quantum interpretation of band spectra of diatomic molecules. After his studies of mathematics, physics, and geography in Marburg and Göttingen, he worked as a private lecturer for theoretical physics in Göttingen (1925), professor in Rostock (1927), Leipzig University (1929), Jena (1946), Frankfurt/Main (1951) and from 1957 again in Göttingen. Additionally, he stayed in Copenhagen (1926) with Niels Bohr and lectured on the atom at Harvard University (1928). He published more than 250 papers and essays in total. Hund made pivotal contributions to quantum theory - esp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Johannes Rydberg
Johannes (Janne) Robert Rydberg (; 8 November 1854 – 28 December 1919) was a Swedish physicist mainly known for devising the Rydberg formula, in 1888, which is used to describe the wavelengths of photons (of visible light and other electromagnetic radiation) emitted by changes in the energy level of an electron in a hydrogen atom. Biography Rydberg was born 8 November 1854 in Halmstad in southern Sweden, the only child of Sven Rydberg and Maria Anderson Rydberg. When he was 4 years old his father died, and the family was forced to live on a small income. In 1873 he graduated from Halmstads elementärläroverk, where he received high grades in maths and physics. Later that year he enrolled in Lund University, and two years later he was awarded his bachelor's degree. In 1879 he was awarded his Doctor of Philosophy with his dissertation "Konstruktioner af kägelsnitt i 3- och 4-punktskontakt". Rydberg began his career as an amanuensis in the institution. He became a docent i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Carl Runge
Carl David Tolmé Runge (; 30 August 1856 – 3 January 1927) was a German mathematician, physicist, and spectroscopist. He was co-developer and co-eponym of the Runge–Kutta method (German pronunciation: ), in the field of what is today known as numerical analysis. Life and work Runge spent the first few years of his life in Havana, where his father Julius Runge was the Danish consul. His mother was Fanny Schwartz Tolmé. The family later moved to Bremen, where his father died early (in 1864). In 1880, he received his Ph.D. in mathematics at Berlin, where he studied under Karl Weierstrass. In 1886, he became a professor at the Technische Hochschule Hannover in Hanover, Germany. His interests included mathematics, spectroscopy, geodesy, and astrophysics. In addition to pure mathematics, he did experimental work studying spectral lines of various elements (together with Heinrich Kayser), and was very interested in the application of this work to astronomical spectroscopy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heinrich Kayser
Heinrich Gustav Johannes Kayser ForMemRS (; 16 March 1853 – 14 October 1940) was a German physicist and spectroscopist. Biography Kayser was born at Bingen am Rhein. Kayser's early work was concerned with the characteristics of acoustic waves. He discovered the occurrence of helium in the Earth's atmosphere in 1868 during a solar eclipse when he detected a new spectral line in the solar spectrum. In 1881 Kayser coined the word “adsorption”. Together with Carl Runge, he examined the spectra of chemical elements. In 1905, he wrote a paper on electron theory.Kayser, Heinrich. (1905). Die elektronentheorie. DC Heath & Company. The kayser unit, associated with wavenumber, of the CGS system was named after him. He died at Bonn The federal city of Bonn ( lat, Bonna) is a city on the banks of the Rhine in the German state of North Rhine-Westphalia, with a population of over 300,000. About south-southeast of Cologne, Bonn is in the southernmost part of the Rhine-Ru ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CRC Press
The CRC Press, LLC is an American publishing group that specializes in producing technical books. Many of their books relate to engineering, science and mathematics. Their scope also includes books on business, forensics and information technology. CRC Press is now a division of Taylor & Francis, itself a subsidiary of Informa. History The CRC Press was founded as the Chemical Rubber Company (CRC) in 1903 by brothers Arthur, Leo and Emanuel Friedman in Cleveland, Ohio, based on an earlier enterprise by Arthur, who had begun selling rubber laboratory aprons in 1900. The company gradually expanded to include sales of laboratory equipment to chemists. In 1913 the CRC offered a short (116-page) manual called the ''Rubber Handbook'' as an incentive for any purchase of a dozen aprons. Since then the ''Rubber Handbook'' has evolved into the CRC's flagship book, the '' CRC Handbook of Chemistry and Physics''. In 1964, Chemical Rubber decided to focus on its publishing ventures ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group 3 Element
Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. Although some controversy exists regarding the composition and placement of this group, it is generally agreed among those who study the matter that this group contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr); this composition has also been suggested by a 2021 IUPAC provisional report studying the problem. The group is also called the scandium group or scandium family after its lightest member. The chemistry of the group 3 elements is typical for early transition metals: they all essentially have only the group oxidation state of +3 as a major one, and like the preceding main-group metals are quite electropositive and have a less rich coordination chemistry. Due to the effects of the lanthanide contraction, yttrium and lutetium are very similar in properties. Yttrium and lutetium have essentially the chemistry of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alkaline Earth Metal
The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure. Structurally, they (together with helium) have in common an outer s-orbital which is full; that is, this orbital contains its full complement of two electrons, which the alkaline earth metals readily lose to form cations with charge +2, and an oxidation state of +2. All the discovered alkaline earth metals occur in nature, although radium occurs only through the decay chain of uranium and thorium and not as a primordial element. There have been experiments, all unsuccessful, to try to synthesize element 120, the next potential member of the group. Characteristics Chemical As with other groups, the members of this family show patterns in their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alkali Metal
The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names for the elements in some languages, such as German and Russian. rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute Group (periodic table)#Group names, group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an atomic orbital, s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of periodic trends, group trends in properties in the periodic table, with elements exhibiting well-characterised homology (chemistry), homologous behaviour. This family of elements is also known as the lithium family after its leading element. The alkali metals are all sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

James Dewar
Sir James Dewar (20 September 1842 – 27 March 1923) was a British chemist and physicist. He is best known for his invention of the vacuum flask, which he used in conjunction with research into the liquefaction of gases. He also studied atomic and molecular spectroscopy, working in these fields for more than 25 years. Early life James Dewar was born in Kincardine, Perthshire (now in Fife) in 1842, the youngest of six boys of Ann Dewar and Thomas Dewar, a vintner. He was educated at Kincardine Parish School and then Dollar Academy. His parents died when he was 15. He attended the University of Edinburgh where he studied chemistry under Lyon Playfair (later Baron Playfair), becoming Playfair's personal assistant. Dewar also studied under August Kekulé at Ghent. Career In 1875, Dewar was elected Jacksonian professor of natural experimental philosophy at the University of Cambridge, becoming a member of Peterhouse. He became a member of the Royal Institution and later, in 18 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]