Didymus The Musician
   HOME
*





Didymus The Musician
Didymus the Musician (Greek: Δίδυμος) was a music theorist in Rome of the end of the 1st century BC or beginning of the 1st century AD, who combined elements of earlier theoretical approaches with an appreciation of the aspect of performance. Formerly assumed to be identical with the Alexandrian grammarian and lexicographer Didymus Chalcenterus, because Ptolemy and Porphyry referred to him as Didymus ''ho mousikos'' (the musician), classical scholars now believe that this Didymus was a younger grammarian and musician working in Rome at the time of Emperor Nero. He was a predecessor of Ptolemy at the library of Alexandria. According to Andrew Barker, his intention was to revive and produce contemporary performances of the music of Greek antiquity. The syntonic comma of 81/80 is sometimes called the ''comma of Didymus'' after him. Among his works was ''On the Difference between the Aristoxenians and the Pythagoreans'' (Περὶ τῆς διαφορᾶς τῶν Ἀριστ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Music Theory
Music theory is the study of the practices and possibilities of music. ''The Oxford Companion to Music'' describes three interrelated uses of the term "music theory". The first is the "rudiments", that are needed to understand music notation (key signatures, time signatures, and rhythmic notation); the second is learning scholars' views on music from antiquity to the present; the third is a sub-topic of musicology that "seeks to define processes and general principles in music". The musicological approach to theory differs from music analysis "in that it takes as its starting-point not the individual work or performance but the fundamental materials from which it is built." Music theory is frequently concerned with describing how musicians and composers make music, including tuning systems and composition methods among other topics. Because of the ever-expanding conception of what constitutes music, a more inclusive definition could be the consideration of any sonic phenomena, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagoreans
Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, in modern Calabria (Italy). Early Pythagorean communities spread throughout Magna Graecia. Pythagoras' death and disputes about his teachings led to the development of two philosophical traditions within Pythagoreanism. The ''akousmatikoi'' were superseded in the 4th century BC as a significant mendicant school of philosophy by the Cynics. The ''mathēmatikoi'' philosophers were absorbed into the Platonic school in the 4th century BC. Following political instability in Magna Graecia, some Pythagorean philosophers fled to mainland Greece while others regrouped in Rhegium. By about 400 BC the majority of Pythagorean philosophers had left Italy. Pythagorean ideas exercised a marked influence on Plato and through him, on all of Western phi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Major Second
In Western music theory, a major second (sometimes also called whole tone or a whole step) is a second spanning two semitones (). A second is a musical interval encompassing two adjacent staff positions (see Interval number for more details). For example, the interval from C to D is a major second, as the note D lies two semitones above C, and the two notes are notated on adjacent staff positions. Diminished, minor and augmented seconds are notated on adjacent staff positions as well, but consist of a different number of semitones (zero, one, and three). The major second is the interval that occurs between the first and second degrees of a major scale, the tonic and the supertonic. On a musical keyboard, a major second is the interval between two keys separated by one key, counting white and black keys alike. On a guitar string, it is the interval separated by two frets. In moveable-do solfège, it is the interval between ''do'' and ''re''. It is considered a melo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minor Tone
In Western music theory, a major second (sometimes also called whole tone or a whole step) is a second spanning two semitones (). A second is a musical interval encompassing two adjacent staff positions (see Interval number for more details). For example, the interval from C to D is a major second, as the note D lies two semitones above C, and the two notes are notated on adjacent staff positions. Diminished, minor and augmented seconds are notated on adjacent staff positions as well, but consist of a different number of semitones (zero, one, and three). The major second is the interval that occurs between the first and second degrees of a major scale, the tonic and the supertonic. On a musical keyboard, a major second is the interval between two keys separated by one key, counting white and black keys alike. On a guitar string, it is the interval separated by two frets. In moveable-do solfège, it is the interval between ''do'' and ''re''. It is considered a melodi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Major Tone
In Western music theory, a major second (sometimes also called whole tone or a whole step) is a second spanning two semitones (). A second is a musical interval encompassing two adjacent staff positions (see Interval number for more details). For example, the interval from C to D is a major second, as the note D lies two semitones above C, and the two notes are notated on adjacent staff positions. Diminished, minor and augmented seconds are notated on adjacent staff positions as well, but consist of a different number of semitones (zero, one, and three). The major second is the interval that occurs between the first and second degrees of a major scale, the tonic and the supertonic. On a musical keyboard, a major second is the interval between two keys separated by one key, counting white and black keys alike. On a guitar string, it is the interval separated by two frets. In moveable-do solfège, it is the interval between ''do'' and ''re''. It is considered a melo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diatonic Scale
In music theory, a diatonic scale is any heptatonic scale that includes five whole steps (whole tones) and two half steps (semitones) in each octave, in which the two half steps are separated from each other by either two or three whole steps, depending on their position in the scale. This pattern ensures that, in a diatonic scale spanning more than one octave, all the half steps are Maximal evenness, maximally separated from each other (i.e. separated by at least two whole steps). The seven pitch (music), pitches of any diatonic scale can also be obtained by using a Interval cycle, chain of six perfect fifths. For instance, the seven natural (music), natural pitch classes that form the C-major scale can be obtained from a stack of perfect fifths starting from F: :F–C–G–D–A–E–B Any sequence of seven successive natural notes, such as C–D–E–F–G–A–B, and any Transposition (music), transposition thereof, is a diatonic scale. Modern musical keyboards are des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Major Third
In classical music, a third is a musical interval encompassing three staff positions (see Interval number for more details), and the major third () is a third spanning four semitones. Forte, Allen (1979). ''Tonal Harmony in Concept and Practice'', p.8. Holt, Rinehart, and Winston. Third edition . "A large 3rd, or ''major 3rd'' (M3) encompassing four half steps." Along with the minor third, the major third is one of two commonly occurring thirds. It is qualified as ''major'' because it is the larger of the two: the major third spans four semitones, the minor third three. For example, the interval from C to E is a major third, as the note E lies four semitones above C, and there are three staff positions from C to E. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones (two and five). The major third may be derived from the harmonic series as the interval between the fourth and fifth harmonics. The maj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archytas
Archytas (; el, Ἀρχύτας; 435/410–360/350 BC) was an Ancient Greek philosopher, mathematician, music theorist, astronomer, statesman, and strategist. He was a scientist of the Pythagorean school and famous for being the reputed founder of mathematical mechanics, as well as a good friend of Plato. Life and work Archytas was born in Tarentum, Magna Graecia and was the son of Mnesagoras or Hadees. For a while, he was taught by Philolaus, and was a teacher of mathematics to Eudoxus of Cnidus. Archytas and Eudoxus' student was Menaechmus. As a Pythagorean, Archytas believed that only arithmetic, not geometry, could provide a basis for satisfactory proofs. Archytas is believed to be the founder of mathematical mechanics.: ''Vitae philosophorum'' As only described in the writings of Aulus Gellius five centuries after him, he was reputed to have designed and built the first artificial, self-propelled flying device, a bird-shaped model propelled by a jet of what was probably st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrachord
In music theory, a tetrachord ( el, τετράχορδoν; lat, tetrachordum) is a series of four notes separated by three intervals. In traditional music theory, a tetrachord always spanned the interval of a perfect fourth, a 4:3 frequency proportion (approx. 498 cents)—but in modern use it means any four-note segment of a scale or tone row, not necessarily related to a particular tuning system. History The name comes from ''tetra'' (from Greek—"four of something") and ''chord'' (from Greek ''chordon''—"string" or "note"). In ancient Greek music theory, ''tetrachord'' signified a segment of the greater and lesser perfect systems bounded by ''immovable'' notes ( ); the notes between these were ''movable'' ( ). It literally means ''four strings'', originally in reference to harp-like instruments such as the lyre or the kithara, with the implicit understanding that the four strings produced adjacent (i.e., conjunct) notes. Modern music theory uses the octave as the basic u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Aristoxenus
Aristoxenus of Tarentum ( el, Ἀριστόξενος ὁ Ταραντῖνος; born 375, fl. 335 BC) was a Greek Peripatetic philosopher, and a pupil of Aristotle. Most of his writings, which dealt with philosophy, ethics and music, have been lost, but one musical treatise, ''Elements of Harmony'' (Greek: Ἁρμονικὰ στοιχεῖα; Latin: ''Elementa harmonica''), survives incomplete, as well as some fragments concerning rhythm and meter. The ''Elements'' is the chief source of our knowledge of ancient Greek music."Aristoxenus of Tarentum" in ''Chambers's Encyclopædia''. London: George Newnes, 1961, Vol. 1, p. 593. Life Aristoxenus was born at Tarentum, and was the son of a learned musician named Spintharus (otherwise Mnesias). He learned music from his father, and having then been instructed by Lamprus of Erythrae and Xenophilus the Pythagorean, he finally became a pupil of Aristotle, whom he appears to have rivaled in the variety of his studies. According to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexandrine Grammarians
The Alexandrine grammarians were philologists and textual scholars who flourished in Hellenistic Alexandria in the 3rd and 2nd centuries BCE, when that city was the center of Hellenistic culture. Despite the name, the work of the Alexandrine grammarians was never confined to grammar, and in fact did not include it, since grammar in the modern sense did not exist until the first century BC. In Hellenistic and later times, '' grammarian'' refers primarily to scholars concerned with the restoration, proper reading, explanation and interpretation of the classical texts, including literary criticism. However unlike Atticism, their goal was not to reform the Greek in their day. The Alexandrine grammarians undertook the critical revision of the works of classical Greek literature, particularly those of Homer, and their studies were profoundly influential, marking the beginning of the Western grammatical tradition. From the beginning, a typical custom, and methodological bias of this trad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syntonic Comma
In music theory, the syntonic comma, also known as the chromatic diesis, the Didymean comma, the Ptolemaic comma, or the diatonic comma is a small comma type interval between two musical notes, equal to the frequency ratio 81:80 (= 1.0125) (around 21.51 cents). Two notes that differ by this interval would sound different from each other even to untrained ears,"Sol-Fa – The Key to Temperament"
, ''BBC''. but would be close enough that they would be more likely interpreted as out-of-tune versions of the same note than as different notes. The comma is also referred to as a Didymean comma because it is the amount by which Didymus corrected the