Design Load
   HOME
*





Design Load
In a general sense, the design load is the maximum amount of something a system is designed to handle or the maximum amount of something that the system can produce, which are very different meanings. For example, a crane with a design load of 20 tons is designed to be able to lift loads that weigh 20 tons or less. However, when a failure could be catastrophic, such as a crane dropping its load or collapsing entirely, a factor of safety is necessary. As a result, the crane should lift about 2 to 5 tons at the most. In structural design, a design load is greater than the load which the system is expected to support. This is because engineers incorporate a safety factor in their design, in order to ensure that the system will be able to support at least the expected loads (called specified loads, despite any problems with construction, materials, etc. that go unnoticed during construction. A heater would have a general design load, meaning the maximum amount of heat it can produce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crane (machine)
A crane is a type of machine, generally equipped with a hoist rope, wire ropes or chains, and sheaves, that can be used both to lift and lower materials and to move them horizontally. It is mainly used for lifting heavy objects and transporting them to other places. The device uses one or more simple machines to create mechanical advantage and thus move loads beyond the normal capability of a human. Cranes are commonly employed in transportation for the loading and unloading of freight, in construction for the movement of materials, and in manufacturing for the assembling of heavy equipment. The first known crane machine was the shaduf, a water-lifting device that was invented in ancient Mesopotamia (modern Iraq) and then appeared in ancient Egyptian technology. Construction cranes later appeared in ancient Greece, where they were powered by men or animals (such as donkeys), and used for the construction of buildings. Larger cranes were later developed in the Roman Empire, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor Of Safety
In engineering, a factor of safety (FoS), also known as (and used interchangeably with) safety factor (SF), expresses how much stronger a system is than it needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy. Many systems are intentionally built much stronger than needed for normal usage to allow for emergency situations, unexpected loads, misuse, or degradation (reliability). Definition There are two definitions for the factor of safety (FoS): * The ratio of a structure's absolute strength (structural capability) to actual applied load; this is a measure of the reliability of a particular design. This is a calculated value, and is sometimes referred to, for the sake of clarity, as a ''realized factor of safety''. * A constant required value, imposed by law, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Structural Design
Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and muscles' that create the form and shape of man-made structures. Structural engineers also must understand and calculate the stability, strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures. The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering. Structural engineering theory is based upon applied physical laws and empirical knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Safety Factor
In engineering, a factor of safety (FoS), also known as (and used interchangeably with) safety factor (SF), expresses how much stronger a system is than it needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy. Many systems are intentionally built much stronger than needed for normal usage to allow for emergency situations, unexpected loads, misuse, or degradation (reliability). Definition There are two definitions for the factor of safety (FoS): * The ratio of a structure's absolute strength (structural capability) to actual applied load; this is a measure of the reliability of a particular design. This is a calculated value, and is sometimes referred to, for the sake of clarity, as a ''realized factor of safety''. * A constant required value, imposed by law, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Specified Loads
In civil engineering, specified loads are the best estimate of the actual loads a structure is expected to carry. These loads come in many different forms, such as people, equipment, vehicles, wind, rain, snow, earthquakes, the building materials themselves, etc. Specified Loads also known as Characteristic loads in many cases. Buildings will be subject to loads from various sources. The principal ones can be classified as live loads (loads which are not always present in the structure), dead loads (loads which are permanent and immovable excepting redesign or renovation) and wind load, as described below. In some cases structures may be subject to other loads, such as those due to earthquakes or pressures from retained material. The expected maximum magnitude of each is referred to as the characteristic load. Dead loads are those representing the self weight of the building; their magnitude can be estimated on the basis of material densities and component sizes. Dead loads are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heater
Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR (as in the designation of HACR-rated circuit breakers). HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels, and senior living facilities; medium to large industrial and office buildings such as skyscrapers and hospitals; vehicles such as cars, trains, airplanes, ships and submarines; and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh ai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Limit States Design
Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria.EN 1990:2002 E, Eurocode - Basis of Structural Design, CEN, November 29, 2001 The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. A structure designed by LSD is proportioned to sustain all actions likely to occur during its design life, and to remain fit for use, with an appropriate level of reliability for each limit state. Building codes based on LSD implicitly define the appropriate levels of reliability by their prescriptions. The method of limit state design, developed in the USSR and based on research led by Professor N.S. Streletski, was introduced in USSR building regulations in 1955. Criteria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor Of Safety
In engineering, a factor of safety (FoS), also known as (and used interchangeably with) safety factor (SF), expresses how much stronger a system is than it needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy. Many systems are intentionally built much stronger than needed for normal usage to allow for emergency situations, unexpected loads, misuse, or degradation (reliability). Definition There are two definitions for the factor of safety (FoS): * The ratio of a structure's absolute strength (structural capability) to actual applied load; this is a measure of the reliability of a particular design. This is a calculated value, and is sometimes referred to, for the sake of clarity, as a ''realized factor of safety''. * A constant required value, imposed by law, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Specified Load
In civil engineering, specified loads are the best estimate of the actual loads a structure is expected to carry. These loads come in many different forms, such as people, equipment, vehicles, wind, rain, snow, earthquakes, the building materials themselves, etc. Specified Loads also known as Characteristic loads in many cases. Buildings will be subject to loads from various sources. The principal ones can be classified as live loads (loads which are not always present in the structure), dead loads (loads which are permanent and immovable excepting redesign or renovation) and wind load, as described below. In some cases structures may be subject to other loads, such as those due to earthquakes or pressures from retained material. The expected maximum magnitude of each is referred to as the characteristic load. Dead loads are those representing the self weight of the building; their magnitude can be estimated on the basis of material densities and component sizes. Dead loads are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]