Derangement
   HOME
*



picture info

Derangement
In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. In other words, a derangement is a permutation that has no fixed points. The number of derangements of a set of size ''n'' is known as the subfactorial of ''n'' or the ''n-''th derangement number or ''n-''th de Montmort number. Notations for subfactorials in common use include !''n,'' ''Dn'', ''dn'', or ''n''¡. For ''n'' > 0, the subfactorial !''n'' equals the nearest integer to ''n''!/''e,'' where ''n''! denotes the factorial of ''n'' and ''e'' is Euler's number. The problem of counting derangements was first considered by Pierre Raymond de Montmort in 1708; he solved it in 1713, as did Nicholas Bernoulli at about the same time. Example Suppose that a professor gave a test to 4 students – A, B, C, and D – and wants to let them grade each other's tests. Of course, no student should grade their own test. How many ways could the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derangements
In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. In other words, a derangement is a permutation that has no fixed points. The number of derangements of a set of size ''n'' is known as the subfactorial of ''n'' or the ''n-''th derangement number or ''n-''th de Montmort number. Notations for subfactorials in common use include !''n,'' ''Dn'', ''dn'', or ''n''¡. For ''n'' > 0, the subfactorial !''n'' equals the nearest integer to ''n''!/''e,'' where ''n''! denotes the factorial of ''n'' and ''e'' is Euler's number. The problem of counting derangements was first considered by Pierre Raymond de Montmort in 1708; he solved it in 1713, as did Nicholas Bernoulli at about the same time. Example Suppose that a professor gave a test to 4 students – A, B, C, and D – and wants to let them grade each other's tests. Of course, no student should grade their own test. How many ways could the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inclusion–exclusion Principle
In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as : , A \cup B, = , A, + , B, - , A \cap B, where ''A'' and ''B'' are two finite sets and , ''S'', indicates the cardinality of a set ''S'' (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets ''A'', ''B'' and ''C'' is given by :, A \cup B \cup C, = , A, + , B, + , C, - , A \cap B, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Permutation Statistics
The statistics of random permutations, such as the Permutation group#Examples, cycle structure of a random permutation are of fundamental importance in the analysis of algorithms, especially of sorting algorithms, which operate on random permutations. Suppose, for example, that we are using quickselect (a cousin of quicksort) to select a random element of a random permutation. Quickselect will perform a partial sort on the array, as it partitions the array according to the pivot. Hence a permutation will be less disordered after quickselect has been performed. The amount of disorder that remains may be analysed with generating functions. These generating functions depend in a fundamental way on the generating functions of random permutation statistics. Hence it is of vital importance to compute these generating functions. The article on random permutations contains an introduction to random permutations. The fundamental relation Permutations are sets of labelled cycles. Using th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rencontres Numbers
In combinatorial mathematics, the rencontres numbers are a triangular array of integers that enumerate permutations of the set with specified numbers of fixed points: in other words, partial derangements. (''Rencontre'' is French for ''encounter''. By some accounts, the problem is named after a solitaire game.) For ''n'' ≥ 0 and 0 ≤ ''k'' ≤ ''n'', the rencontres number ''D''''n'', ''k'' is the number of permutations of that have exactly ''k'' fixed points. For example, if seven presents are given to seven different people, but only two are destined to get the right present, there are ''D''7, 2 = 924 ways this could happen. Another often cited example is that of a dance school with 7 couples, where, after tea-break the participants are told to ''randomly'' find a partner to continue, then once more there are ''D''7, 2 = 924 possibilities that 2 previous couples meet again by chance. Numerical values Here is the beg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book '' Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N! V !n
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book ''Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Allen Whitworth
William Allen Whitworth (1 February 1840 – 12 March 1905) was an English mathematician and a priest in the Church of England.. Education and mathematical career Whitworth was born in Runcorn; his father, William Whitworth, was a school headmaster, and he was the oldest of six siblings. He was schooled at the Sandicroft School in Northwich and then at St John's College, Cambridge, earning a B.A. in 1862 as 16th Wrangler. He taught mathematics at the Portarlington School and the Rossall School, and was a professor of mathematics at Queen's College in Liverpool from 1862 to 1864. He returned to Cambridge to earn a master's degree in 1865, and was a fellow there from 1867 to 1882. Mathematical contributions As an undergraduate, Whitworth became the founding editor in chief of the ''Messenger of Mathematics'', and he continued as its editor until 1880. He published works about the logarithmic spiral and about trilinear coordinates, but his most famous mathematical publication is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler's Number
The number , also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of a logarithm, base of the natural logarithms. It is the Limit of a sequence, limit of as approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite Series (mathematics), series e = \sum\limits_^ \frac = 1 + \frac + \frac + \frac + \cdots. It is also the unique positive number such that the graph of the function has a slope of 1 at . The (natural) exponential function is the unique function that equals its own derivative and satisfies the equation ; hence one can also define as . The natural logarithm, or logarithm to base , is the inverse function to the natural exponential function. The natural logarithm of a number can be defined directly as the integral, area under the curve between and , in which case is the value of for which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ménage Problem
In combinatorial mathematics, the ménage problem or problème des ménages asks for the number of different ways in which it is possible to seat a set of male-female couples at a round dining table so that men and women alternate and nobody sits next to his or her partner. This problem was formulated in 1891 by Édouard Lucas and independently, a few years earlier, by Peter Guthrie Tait in connection with knot theory. For a number of couples equal to 3, 4, 5, ... the number of seating arrangements is :12, 96, 3120, 115200, 5836320, 382072320, 31488549120, ... . Mathematicians have developed formulas and recurrence equations for computing these numbers and related sequences of numbers. Along with their applications to etiquette and knot theory, these numbers also have a graph theoretic interpretation: they count the numbers of matchings and Hamiltonian cycles in certain families of graphs. Touchard's formula Let ''M''''n'' denote the number of seating arrangements for ''n'' cou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of scie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pierre Raymond De Montmort
Pierre Remond de Montmort was a French mathematician. He was born in Paris on 27 October 1678 and died there on 7 October 1719. His name was originally just Pierre Remond. His father pressured him to study law, but he rebelled and travelled to England and Germany, returning to France in 1699 when, upon receiving a large inheritance from his father, he bought an estate and took the name de Montmort. He was friendly with several other notable mathematicians, and especially Nicholas Bernoulli, who collaborated with him while visiting his estate. He was elected a fellow of the Royal Society in 1715, while traveling again to England, and became a member of the French Academy of Sciences in 1716. De Montmort is known for his book on probability and games of chance, Essay d'analyse sur les jeux de hazard, which was also the first to introduce the combinatorial study of derangements. He is also known for naming Pascal's triangle after Blaise Pascal, calling it "Table de M. Pascal pour ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Up To
Two Mathematical object, mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, ''x'' is unique up to ''R'' means that all objects ''x'' under consideration are in the same equivalence class with respect to the relation ''R''. Moreover, the equivalence relation ''R'' is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation ''R'' that relates two lists if one can be obtained by reordering (permutation) from the other. As anot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]