Dempwolff Group
   HOME
*





Dempwolff Group
In mathematical finite group theory, the Dempwolff group is a finite group of order 319979520 = 215·32·5·7·31, that is the unique nonsplit extension 2^\mathrm_(\mathbb_) of \mathrm_(\mathbb_) by its natural module of order 2^5. The uniqueness of such a nonsplit extension was shown by , and the existence by , who showed using some computer calculations of that the Dempwolff group is contained in the compact Lie group E_ as the subgroup fixing a certain lattice in the Lie algebra of E_, and is also contained in the Thompson sporadic group (the full automorphism group of this lattice) as a maximal subgroup. showed that any extension of \mathrm_(\mathbb_) by its natural module \mathbb_^ splits if q>2, and showed that it also splits if n is not 3, 4, or 5, and in each of these three cases there is just one non-split extension. These three nonsplit extensions can be constructed as follows: *The nonsplit extension 2^\mathrm_(\mathbb_) is a maximal subgroup of the Chevall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thompson Sporadic Group
In the area of modern algebra known as group theory, the Thompson group ''Th'' is a sporadic simple group of order :   2153105372131931 : = 90745943887872000 : ≈ 9. History ''Th'' is one of the 26 sporadic groups and was found by and constructed by . They constructed it as the automorphism group of a certain lattice in the 248-dimensional Lie algebra of E8. It does not preserve the Lie bracket of this lattice, but does preserve the Lie bracket mod 3, so is a subgroup of the Chevalley group E8(3). The subgroup preserving the Lie bracket (over the integers) is a maximal subgroup of the Thompson group called the Dempwolff group (which unlike the Thompson group is a subgroup of the compact Lie group E8). Representations The centralizer of an element of order 3 of type 3C in the Monster group is a product of the Thompson group and a group of order 3, as a result of which the Thompson group acts on a vertex operator algebra over the field with 3 elements. Thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chevalley Group
In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase ''group of Lie type'' does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups. The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. and are standard references for groups of Lie type. Classical groups An initial approach to this question was the definition and detailed study of the so-called ''classical groups'' over finite and other fields by . These groups were studied by L. E. Dickson ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conway Group
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by . The largest of the Conway groups, Co0, is the group of automorphisms of the Leech lattice Λ with respect to addition and inner product. It has order : but it is not a simple group. The simple group Co1 of order : =  221395472111323 is defined as the quotient of Co0 by its center, which consists of the scalar matrices ±1. The groups Co2 of order : =  218365371123 and Co3 of order : =  210375371123 consist of the automorphisms of Λ fixing a lattice vector of type 2 and type 3, respectively. As the scalar −1 fixes no non-zero vector, these two groups are isomorphic to subgroups of Co1. The inner product on the Leech lattice is defined as 1/8 the sum of the products of respective co-ordinates of the two multiplicand vectors; it is an integer. The square norm o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier. ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH RWTH Aachen University (), also known as North Rhine-Westphalia Technical University of Aachen, Rhine-Westphalia Technical University of Aachen, Technical University of Aachen, University of Aachen, or ''Rheinisch-Westfälische Technische Hoch ...) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business international ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]