Del In Cylindrical And Spherical Coordinates
   HOME
*





Del In Cylindrical And Spherical Coordinates
This is a list of some vector calculus formulae for working with common curvilinear coordinates, curvilinear coordinate systems. Notes * This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11#Coordinate systems, ISO 31-11, for spherical coordinate system, spherical coordinates (other sources may reverse the definitions of ''θ'' and ''φ''): ** The polar angle is denoted by \theta \in [0, \pi]: it is the angle between the ''z''-axis and the radial vector connecting the origin to the point in question. ** The azimuthal angle is denoted by \varphi \in [0, 2\pi]: it is the angle between the ''x''-axis and the projection of the radial vector onto the ''xy''-plane. * The function can be used instead of the mathematical function owing to its Domain of a function, domain and Image (mathematics), image. The classical arctan function has an image of , whereas atan2 is defined to have an image of . Coordinate conversions CAUTION: the operation \arctan\lef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Calculus
Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow. Vector calculus was developed from quaternion analysis by J. Willard Gibbs and Oliver Heaviside near the end of the 19th century, and most of the notation and terminology was established by Gibbs and Edwin Bidwell Wilson in their 1901 book, ''Vector Analysis''. In the conventional form using cross products, vector calculus does not generalize to higher dimensions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point. As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the velocity field points outward from that region. The divergence of the velocity field in that region would thus have a positive value. While the air is cooled and thus contracting, the divergence of the velocity has a negative value. Physical interpretation of divergence In physical terms, the divergence of a vector field is the extent to which the vector field flux behaves like a source at a given point. It is a local measure of its "outgoingness" – the extent to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Fields In Cylindrical And Spherical Coordinates
Note: This page uses common physics notation for spherical coordinates, in which \theta is the angle between the ''z'' axis and the radius vector connecting the origin to the point in question, while \phi is the angle between the projection of the radius vector onto the ''x-y'' plane and the ''x'' axis. Several other definitions are in use, and so care must be taken in comparing different sources. Cylindrical coordinate system Vector fields Vectors are defined in cylindrical coordinates by (''ρ'', ''φ'', ''z''), where * ''ρ'' is the length of the vector projected onto the ''xy''-plane, * ''φ'' is the angle between the projection of the vector onto the ''xy''-plane (i.e. ''ρ'') and the positive ''x''-axis (0 ≤ ''φ'' < 2''π''), * ''z'' is the regular ''z''-coordinate. (''ρ'', ''φ'', ''z'') is given in by: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curvilinear Coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name ''curvilinear coordinates'', coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved. Well-known examples of curvilinear coordinate systems in three-dimensional Euclidean space (R3) are cylindrical and spherical coordinates. A Cartesian coordinate surface in this space is a coordinate plane; for example ''z'' = 0 defines the ''x''-''y'' plane. In the same space, the coordinate surface ''r'' = 1 in spherical coordinates is the surface of a unit sphere, which is curved. The formalism of curvilinear c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Coordinates
In mathematics, orthogonal coordinates are defined as a set of ''d'' coordinates q = (''q''1, ''q''2, ..., ''q''''d'') in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate surface for a particular coordinate ''q''''k'' is the curve, surface, or hypersurface on which ''q''''k'' is a constant. For example, the three-dimensional Cartesian coordinates (''x'', ''y'', ''z'') is an orthogonal coordinate system, since its coordinate surfaces ''x'' = constant, ''y'' = constant, and ''z'' = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates. Motivation While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as tho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Of A Function
In calculus, the differential represents the principal part of the change in a function ''y'' = ''f''(''x'') with respect to changes in the independent variable. The differential ''dy'' is defined by :dy = f'(x)\,dx, where f'(x) is the derivative of ''f'' with respect to ''x'', and ''dx'' is an additional real variable (so that ''dy'' is a function of ''x'' and ''dx''). The notation is such that the equation :dy = \frac\, dx holds, where the derivative is represented in the Leibniz notation ''dy''/''dx'', and this is consistent with regarding the derivative as the quotient of the differentials. One also writes :df(x) = f'(x)\,dx. The precise meaning of the variables ''dy'' and ''dx'' depends on the context of the application and the required level of mathematical rigor. The domain of these variables may take on a particular geometrical significance if the differential is regarded as a particular differential form, or analytical significance if the differential is re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nabla Spherical2
Nabla may refer to any of the following: * the nabla symbol ∇ ** the vector differential operator, also called del, denoted by the nabla * Nabla, tradename of a type of rail fastening system (of roughly triangular shape) * ''Nabla'' (moth), a genus of moths * Nabla (instrument) The nevel or nebel ( he, נֵבֶל ''nēḇel'') was a stringed instrument used by the Israelites. The Greeks translated the name as ''nabla'' (νάβλα, "Phoenician harp"). A number of possibilities have been proposed for what kind of inst ...
, the Greek word for a Phoenician or Hebrew stringed instrument after the triangular shape of which all of the above are named {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nabla Cylindrical2
Nabla may refer to any of the following: * the nabla symbol ∇ ** the vector differential operator, also called del, denoted by the nabla * Nabla, tradename of a type of rail fastening system (of roughly triangular shape) * ''Nabla'' (moth), a genus of moths * Nabla (instrument) The nevel or nebel ( he, נֵבֶל ''nēḇel'') was a stringed instrument used by the Israelites. The Greeks translated the name as ''nabla'' (νάβλα, "Phoenician harp"). A number of possibilities have been proposed for what kind of inst ...
, the Greek word for a Phoenician or Hebrew stringed instrument after the triangular shape of which all of the above are named {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nabla Cartesian
Nabla may refer to any of the following: * the nabla symbol ∇ ** the vector differential operator, also called del, denoted by the nabla * Nabla, tradename of a type of rail fastening system (of roughly triangular shape) * ''Nabla'' (moth), a genus of moths * Nabla (instrument) The nevel or nebel ( he, נֵבֶל ''nēḇel'') was a stringed instrument used by the Israelites. The Greeks translated the name as ''nabla'' (νάβλα, "Phoenician harp"). A number of possibilities have been proposed for what kind of inst ...
, the Greek word for a Phoenician or Hebrew stringed instrument after the triangular shape of which all of the above are named {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triple Product
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product. Scalar triple product The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation Geometrically, the scalar triple product : \mathbf\cdot(\mathbf\times \mathbf) is the (signed) volume of the parallelepiped defined by the three vectors given. Here, the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it were, it would leave the cross product of a scalar and a vector, which is not defined. Properties * The scalar triple product is unchanged under a circular shift of its three operands (a, b, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Material Derivative
In continuum mechanics, the material derivative describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum deformation. For example, in fluid dynamics, the velocity field is the flow velocity, and the quantity of interest might be the temperature of the fluid. In which case, the material derivative then describes the temperature change of a certain fluid parcel with time, as it flows along its pathline (trajectory). Other names There are many other names for the material derivative, including: *advective derivative *convective derivative *derivative following the motion *hydrodynamic derivative *Lagrangian derivative *particle derivative *substantial derivative *substantive derivative *Stokes derivative *total derivative, although the material derivative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vector Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the nabla operator), or \Delta. In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian of a function at a point measures by how much the average value of over small spheres or balls centered at deviates from . The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749–1827), who first applied the operator to the study of celestial mechanics: the Laplacian of the gravitational potential due to a given mass density distribution is a constant multiple of that density ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]