Debreu Theorems
   HOME
*





Debreu Theorems
In economics, the Debreu theorems are several statements about the representation of a preference ordering by a real-valued function. The theorems were proved by Gerard Debreu during the 1950s. Background Suppose a person is asked questions of the form "Do you prefer A or B?" (when A and B can be options, actions to take, states of the world, consumption bundles, etc.). All the responses are recorded. Then, preferences of that person are represented by a numeric ''utility function'', such that the utility of option A is larger than option B if and only if the agent prefers A to B. The Debreu theorems come to answer the following basic question: what conditions on the preference relation of the agent guarantee that such representative utility function can be found? Existence of ordinal utility function The 1954 Theorems say, roughly, that every preference relation which is complete, transitive and continuous, can be represented by a continuous ordinal utility function. St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Economics
Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interactions of Agent (economics), economic agents and how economy, economies work. Microeconomics analyzes what's viewed as basic elements in the economy, including individual agents and market (economics), markets, their interactions, and the outcomes of interactions. Individual agents may include, for example, households, firms, buyers, and sellers. Macroeconomics analyzes the economy as a system where production, consumption, saving, and investment interact, and factors affecting it: employment of the resources of labour, capital, and land, currency inflation, economic growth, and public policies that have impact on glossary of economics, these elements. Other broad distinctions within economics include those between positive economics, desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Topology
In mathematics, the real coordinate space of dimension , denoted ( ) or is the set of the -tuples of real numbers, that is the set of all sequences of real numbers. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a ''real coordinate space'' of the same dimension as that of the vector space. Similarly, the Cartesian coordinates of the points of a Euclidean space of dimension form a ''real coordinate space'' of dimension . These one to one correspondences between vectors, points and coordinate vectors explain the names of ''coordinate space'' and ''coordinate vector''. It allows using geometric terms and methods for studying real coordinate spaces, and, conversely, to use methods of calculus in geometry. This approach of geometry was introduced by René Descartes in the 17th century. It is widely used, as it allows loca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann–Morgenstern Utility Theorem
In decision theory, the von Neumann–Morgenstern (VNM) utility theorem shows that, under certain axioms of rational behavior, a decision-maker faced with risky (probabilistic) outcomes of different choices will behave as if he or she is maximizing the expected value of some function defined over the potential outcomes at some specified point in the future. This function is known as the von Neumann–Morgenstern utility function. The theorem is the basis for expected utility theory. In 1947, John von Neumann and Oskar Morgenstern proved that any individual whose preferences satisfied four axioms has a utility function; Neumann, John von and Morgenstern, Oskar, '' Theory of Games and Economic Behavior''. Princeton, NJ. Princeton University Press, 1953. such an individual's preferences can be represented on an interval scale and the individual will always prefer actions that maximize expected utility. That is, they proved that an agent is (VNM-)rational ''if and only if'' there exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Utility
In economics, a cardinal utility function or scale is a utility index that preserves preference orderings uniquely up to positive affine transformations. Two utility indices are related by an affine transformation if for the value u(x_i) of one index ''u'', occurring at any quantity x_i of the goods bundle being evaluated, the corresponding value v(x_i) of the other index ''v'' satisfies a relationship of the form :v(x_i) = au(x_i) + b\!, for fixed constants ''a'' and ''b''. Thus the utility functions themselves are related by :v(x) = au(x) + b. The two indices differ only with respect to scale and origin. Thus if one is concave, so is the other, in which case there is often said to be diminishing marginal utility. Thus the use of cardinal utility imposes the assumption that levels of absolute satisfaction exist, so that the magnitudes of increments to satisfaction can be compared across different situations. In consumer choice theory, ordinal utility with its weaker assumption ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann–Morgenstern Utility Theorem
In decision theory, the von Neumann–Morgenstern (VNM) utility theorem shows that, under certain axioms of rational behavior, a decision-maker faced with risky (probabilistic) outcomes of different choices will behave as if he or she is maximizing the expected value of some function defined over the potential outcomes at some specified point in the future. This function is known as the von Neumann–Morgenstern utility function. The theorem is the basis for expected utility theory. In 1947, John von Neumann and Oskar Morgenstern proved that any individual whose preferences satisfied four axioms has a utility function; Neumann, John von and Morgenstern, Oskar, '' Theory of Games and Economic Behavior''. Princeton, NJ. Princeton University Press, 1953. such an individual's preferences can be represented on an interval scale and the individual will always prefer actions that maximize expected utility. That is, they proved that an agent is (VNM-)rational ''if and only if'' there exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Utility
In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask ''how much'' better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility. For example, suppose George tells us that "I prefer A to B and B to C". George's preferences can be represented by a function ''u'' such that: :u(A)=9, u(B)=8, u(C)=1 But critics of cardinal utility claim the only meaningful message of this function is the order u(A)>u(B)>u(C); the actual numbers are meaningless. Hence, George's preferences can also be represented by the following function ''v'': :v(A)=9, v(B)=2, v(C)=1 The functions ''u'' and ''v'' are ordinally equivalent – they represent George's preferences equally well. Ordinal utility contrasts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




L-infinity
In mathematics, \ell^\infty, the (real or complex) vector space of bounded sequences with the supremum norm, and L^\infty = L^\infty(X,\Sigma,\mu), the vector space of essentially bounded measurable functions with the essential supremum norm, are two closely related Banach spaces. In fact the former is a special case of the latter. As a Banach space they are the continuous dual of the Banach spaces \ell_1 of absolutely summable sequences, and L^1 = L^1(X,\Sigma, \mu) of absolutely integrable measurable functions (if the measure space fulfills the conditions of being localizable and therefore semifinite). Pointwise multiplication gives them the structure of a Banach algebra, and in fact they are the standard examples of abelian Von Neumann algebras. Sequence space The vector space \ell^\infty is a sequence space whose elements are the bounded sequences. The vector space operations, addition and scalar multiplication, are applied coordinate by coordinate. With respect to the norm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Tangent
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictionary'', p. 328 from which are derived: * hyperbolic tangent "" (), * hyper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dedekind Cuts
In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the rational numbers into two sets ''A'' and ''B'', such that all elements of ''A'' are less than all elements of ''B'', and ''A'' contains no greatest element. The set ''B'' may or may not have a smallest element among the rationals. If ''B'' has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between ''A'' and ''B''. In other words, ''A'' contains every rational number less than the cut, and ''B'' contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set. Every real number, rational or not, is equated to one and only one cut of ratio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lexicographic Preferences
In economics, lexicographic preferences or lexicographic orderings describe comparative preferences where an agent prefers any amount of one good (X) to any amount of another (Y). Specifically, if offered several bundles of goods, the agent will choose the bundle that offers the most X, no matter how much Y there is. Only when there is a tie between bundles with regard to the number of units of X will the agent start comparing the number of units of Y across bundles. Lexicographic preferences extend utility theory analogously to the way that nonstandard infinitesimals extend the real numbers. With lexicographic preferences, the utility of certain goods is infinitesimal in comparison to others. Etymology ''Lexicography'' refers to the compilation of dictionaries, and is meant to invoke the fact that a dictionary is organized alphabetically: with infinite attention to the first letter of each word, and only in the event of ties with attention to the second letter of each word, etc. Ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second Countable
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mathcal = \_^ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal. A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have. Many "well-behaved" spaces in mathematics are second-countable. For example, Euclidean space (R''n'') with its usual topology is second-countable. Although the usual base of open balls is uncountable, one can restrict to the collection of all open balls with rational radii and whose centers have rational coordinates. This restricted set is countable and still forms a basis. Properties Second-countability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]