Day And Night (cellular Automaton)
   HOME
*



picture info

Day And Night (cellular Automaton)
Day and Night is a cellular automaton rule in the same family as Game of Life. It is defined by rule notation B3678/S34678, meaning that a dead cell becomes live (is born) if it has 3, 6, 7, or 8 live neighbors, and a live cell remains alive (survives) if it has 3, 4, 6, 7, or 8 live neighbors, out of the eight neighbors in the Moore neighborhood. It was invented and named by Nathan Thompson in 1997, and investigated extensively by David I. Bell. The rule is given the name "Day & Night" because its ''on'' and ''off'' states are symmetric: if all the cells in the Universe are inverted, the future states are the inversions of the future states of the original pattern. A pattern in which the entire universe consists of ''off'' cells except for finitely many ''on'' cells can equivalently be represented by a pattern in which the whole universe is covered in ''on'' cells except for finitely many ''off'' cells in congruent locations. Although the detailed evolution of this cellular aut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Day And Night
Day and Night and its variants may refer to: Books *''Day and Night'', poems 1924-1934 by New Zealand poet Ursula Bethell *''Day and Night'', children's book by Teddy Newton based on Pixar's '' Day & Night'' *''Day and Night'', children's book by Anita Ganeri *''Day and Night'', children's book by Jen Green Film and TV * ''Day and Night'' (1997 film) (''Le jour et la nuit''), a French film directed by Bernard-Henri Lévy * ''Day and Night'' (2004 Chinese film) (''日日夜夜''), directed by Wang Chao * ''Day and Night'' (2004 Swedish film) (''Dag och natt''), directed by Simon Staho * ''Day & Night'' (2010 film), a short film by Pixar * ''Day and Night'' (TV series), 2017 Chinese TV series directed by Wang Wei * ''Awaken'' (TV series), literally ''Day and Night'', a South Korean thriller Music *"Day and Night", composition for contralto, piano and cello by Danish composer Per Nørgård Albums * ''Day & Night'' (album), a Chinese pop album by Janice Vidal, 2005 * ''Day ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cellular Automaton
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of ''cells'', each in one of a finite number of '' states'', such as ''on'' and ''off'' (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its ''neighborhood'' is defined relative to the specified cell. An initial state (time ''t'' = 0) is selected by assigning a state for each cell. A new ''generation'' is created (advancing ''t'' by 1), according to some fixed ''rule'' (generally, a mathematical function) that determines the new state of e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Life-like Cellular Automaton
Life-Like was a manufacturer of model trains and accessories. In 1960, the company purchased the assets of the defunct Varney Scale Models and began manufacturing model trains and accessories under the name Life-Like in 1970. In 2005 the parent company, Lifoam Industries, LLC, chose to concentrate on their core products and sold their model railroad operations to hobby distributor Wm. K. Walthers. Today, the Life-Like trademark is used by Walthers for HO Scale Buildings. History Life-Like Products was founded by brothers Lou and Sol Kramer, whose parents were Lithuanian immigrants residing in Baltimore, Maryland. Their experience in the hobby industry began in the 1930s when they became interested in constructing model airplanes. With money borrowed from their mother, the brothers formed the Burd Model Airplane Manufacturing Co. and sold their own model airplane kits using balsa wood they would salvage from discarded banana crates. As the business grew, their line had expanded to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conway's Game Of Life
The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. It is Turing complete and can simulate a universal constructor or any other Turing machine. Rules The universe of the Game of Life is an infinite, two-dimensional orthogonal grid of square ''cells'', each of which is in one of two possible states, ''live'' or ''dead'' (or ''populated'' and ''unpopulated'', respectively). Every cell interacts with its eight '' neighbours'', which are the cells that are horizontally, vertically, or diagonally adjacent. At each step in time, the following transitions occur: # Any live cell with fewer than two live neighbours dies, as if by underpopulation. # Any live cell with two or three live neig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moore Neighborhood
In cellular automata, the Moore neighborhood is defined on a two-dimensional square lattice and is composed of a central cell and the eight cells that surround it. Name The neighborhood is named after Edward F. Moore, a pioneer of cellular automata theory. Importance It is one of the two most commonly used neighborhood types, the other one being the von Neumann neighborhood, which excludes the corner cells. The well known Conway's Game of Life, for example, uses the Moore neighborhood. It is similar to the notion of 8-connected pixels in computer graphics. The Moore neighbourhood of a cell is the cell itself and the cells at a Chebyshev distance of 1. The concept can be extended to higher dimensions, for example forming a 26-cell cubic neighborhood for a cellular automaton in three dimensions, as used by 3D Life. In dimension ''d,'' where 0 \le d, d \in \mathbb, the size of the neighborhood is 3''d'' − 1. In two dimensions, the number of cells in an ''ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oscillator (cellular Automaton)
In a cellular automaton, an oscillator is a pattern that returns to its original state, in the same orientation and position, after a finite number of generations. Thus the evolution of such a pattern repeats itself indefinitely. Depending on context, the term may also include spaceships as well. The smallest number of generations it takes before the pattern returns to its initial condition is called the ''period'' of the oscillator. An oscillator with a period of 1 is usually called a still life, as such a pattern never changes. Sometimes, still lifes are not taken to be oscillators. Another common stipulation is that an oscillator must be finite. Examples In Conway's Game of Life, finite oscillators are known to exist for all periods except 19 and 41. Additionally, until July 2022, the only known examples for period 34 were considered trivial because they consisted of essentially separate components that oscillate at smaller periods. For instance, one can create a period 34 osc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spaceship (cellular Automaton)
In a cellular automaton, a finite pattern is called a spaceship if it reappears after a certain number of generations in the same orientation but in a different position. The smallest such number of generations is called the period of the spaceship. Description The speed of a spaceship is often expressed in terms of ''c'', the metaphorical speed of light (one cell per generation) which in many cellular automata is the fastest that an effect can spread. For example, a glider in Conway's Game of Life is said to have a speed of c/4, as it takes four generations for a given state to be translated by one cell. Similarly, the ''lightweight spaceship'' is said to have a speed of c/2, as it takes four generations for a given state to be translated by two cells. More generally, if a spaceship in a 2D automaton with the Moore neighborhood is translated by (x, y) after n generations, then the speed v is defined as: This notation can be readily generalised to cellular automata with di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gun (cellular Automaton)
In a cellular automaton, a gun is a pattern with a main part that repeats periodically, like an oscillator, and that also periodically emits spaceships. There are then two periods that may be considered: the period of the spaceship output, and the period of the gun itself, which is necessarily a multiple of the spaceship output's period. A gun whose period is larger than the period of the output is a pseudoperiod gun. In the Game of Life, for every ''p'' greater than or equal to 14, it is possible to construct a glider gun in which the gliders are emitted with period ''p''. Since guns continually emit spaceships, the existence of guns in Life means that initial patterns with finite numbers of cells can eventually lead to configurations with limitless numbers of cells, something that John Conway himself originally conjectured to be impossible. However, according to Conway's later testimony, this conjecture was explicitly intended to encourage someone to disprove it – i.e., ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]