David Keays
   HOME
*





David Keays
David Anthony Keays (born 15 March 1976) is an Australian neuroscientist who studies magnetoreception and neurodevelopment. He is currently Chair of Organismal and Developmental Neurobiology at the Ludwig Maximilians University (LMU) in Munich, and a Principle Research Associate at the University of Cambridge. He was formerly a group leader at the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, Education Keays studied Science and Law at the University of Queensland, graduating with a BSc majoring in neuroscience and LLB (Hons) in 1998. He received his honours degree in science from the University of Melbourne in 2001 with a thesis describing the isolation and discovery of a novel conotoxin with analgesic activity from the cone shell ''Conus victoriae''. He practiced law as a criminal prosecutor with the Office of Public Prosecutions (OPP) and was admitted to the Supreme Court of Victoria as a Barrister and Solicitor in 2002. Career and research In 2002, Kea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetoreception
Magnetoreception is a sense which allows an organism to detect the Earth's magnetic field. Animals with this sense include some arthropods, molluscs, and vertebrates (fish, amphibians, reptiles, birds, and mammals, though not humans). The sense is mainly used for orientation and navigation, but it may help some animals to form regional maps. Experiments on migratory birds provide evidence that they make use of a cryptochrome protein in the eye, relying on the quantum radical pair mechanism to perceive magnetic fields. This effect is extremely sensitive to weak magnetic fields, and readily disturbed by radio-frequency interference, unlike a conventional iron compass. Birds have iron-containing materials in their upper beaks. There is some evidence that this provides a magnetic sense, mediated by the trigeminal nerve, but the mechanism is unknown. Cartilaginous fish including sharks and stingrays can detect small variations in electric potential with their electroreceptive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE