Dykstra's Projection Algorithm
   HOME
*



picture info

Dykstra's Projection Algorithm
Dykstra's algorithm is a method that computes a point in the intersection of convex sets, and is a variant of the alternating projection method (also called the projections onto convex sets method). In its simplest form, the method finds a point in the intersection of two convex sets by iteratively projecting onto each of the convex set; it differs from the alternating projection method in that there are intermediate steps. A parallel version of the algorithm was developed by Gaffke and Mathar. The method is named after Richard L. Dykstra who proposed it in the 1980s. A key difference between Dykstra's algorithm and the standard alternating projection method occurs when there is more than one point in the intersection of the two sets. In this case, the alternating projection method gives some arbitrary point in this intersection, whereas Dykstra's algorithm gives a specific point: the projection of ''r'' onto the intersection, where ''r'' is the initial point used in the algorit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Set
In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alternating Projection
In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times. The simplest case, when the sets are affine spaces, was analyzed by John von Neumann. The case when the sets are affine spaces is special, since the iterates not only converge to a point in the intersection (assuming the intersection is non-empty) but to the orthogonal projection of the point onto the intersection. For general closed convex sets, the limit point need not be the projection. Classical work on the case of two closed convex sets shows that the rate of convergence of the iterates is linear. There are now extensions that consider cases when there are more than two sets, or when the sets are not convex, or that give faster convergence rates. Analysis of POCS and related methods attempt to show that the algorithm converges (and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projections Onto Convex Sets
In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times. The simplest case, when the sets are affine spaces, was analyzed by John von Neumann. The case when the sets are affine spaces is special, since the iterates not only converge to a point in the intersection (assuming the intersection is non-empty) but to the orthogonal projection of the point onto the intersection. For general closed convex sets, the limit point need not be the projection. Classical work on the case of two closed convex sets shows that the rate of convergence of the iterates is linear. There are now extensions that consider cases when there are more than two sets, or when the sets are not convex, or that give faster convergence rates. Analysis of POCS and related methods attempt to show that the algorithm converges (and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dykstra Algorithm
Dykstra is a Frisian surname describes a person who lived by a dyke. The suffix "-stra" is derived from old Germanic -sater, meaning sitter or dweller. The name originates in the northern Netherlands province of Friesland. The name was originally spelled "Dijkstra". The name was "Americanized" to Dykstra after Frisian settlers arrived and settled in the United States. Many immigrants bearing the Dykstra surname arrived in the United States between 1840 and 1900, well before the United States experienced "waves of immigration." Most Dykstras were farmers and all belonged to the Dutch Reformed, and later the Christian Reformed Church. Large waves of emigrants also migrated to Brazil, namely to the town of Carambei. The Dykstra/Dijkstra family was integral to the settlement of the area and for the introduction of modern farming practices. Many Dykstras settled in Michigan, Illinois, Iowa, California, New York, and New Jersey. Many eventually grew away from farming and settle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projection (mathematics)
In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition, i.e., which is idempotent. The restriction to a subspace of a projection is also called a ''projection'', even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency). The shadow of a three-dimensional sphere is a closed disk. Originally, the notion of projection was introduced in Euclidean geometry to denote the projection of the three-dimensional Euclidean space onto a plane in it, like the shadow example. The two main projections of this kind are: * The projection from a point onto a plane or central projection: If ''C'' is a point, called the center of projection, then the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Von Neumann
John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest coverage of any mathematician of his time and was said to have been "the last representative of the great mathematicians who were equally at home in both pure and applied mathematics". He integrated pure and applied sciences. Von Neumann made major contributions to many fields, including mathematics (foundations of mathematics, measure theory, functional analysis, ergodic theory, group theory, lattice theory, representation theory, operator algebras, matrix theory, geometry, and numerical analysis), physics (quantum mechanics, hydrodynamics, ballistics, nuclear physics and quantum statistical mechanics), economics ( game theory and general equilibrium theory), computing ( Von Neumann architecture, linear programming, numerical meteo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regina S
Regina (Latin for "queen") may refer to: Places Canada * Regina, Saskatchewan, the capital city of the province ** Regina (electoral district) ** Roman Catholic Archdiocese of Regina France * Régina, French Guiana, a commune United States * Regina, Minneapolis, Minnesota, a neighborhood * Regina, Missouri, an unincorporated community * Regina, New Mexico, a census-designated place * Regina, Virginia, an unincorporated community * Regina, Wisconsin, an unincorporated community Persons *Regina (name) *Regina (concubine), 8th century French concubine of Charlemagne *Regina (martyr), 3rd century French martyr *Regina (American singer), American singer *Regina (Slovenian singer) (born 1965), Slovenian singer *Regina King, (born 1971), American actress and director *Regina "Queen" Saraiva (born 1968), Eurodance singer with stage name of Regina Arts, entertainment, and media Groups *Regina (Bosnia and Herzegovina band), a Bosnian rock band *Regina (Finnish band). a Finnish synth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convex Geometry
In mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, game theory, etc. Classification According to the Mathematics Subject Classification MSC2010, the mathematical discipline ''Convex and Discrete Geometry'' includes three major branches: * general convexity * polytopes and polyhedra * discrete geometry (though only portions of the latter two are included in convex geometry). General convexity is further subdivided as follows: *axiomatic and generalized convexity *convex sets without dimension restrictions *convex sets in topological vector spaces *convex sets in 2 dimensions (including convex curves) *convex sets in 3 dimensions (including convex surfaces) *convex sets in ''n'' dimensions (including convex hy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]