HOME
*



picture info

Double Counting (proof Technique)
In combinatorics, double counting, also called counting in two ways, is a combinatorial proof technique for showing that two expressions are equal by demonstrating that they are two ways of counting the size of one set. In this technique, which call "one of the most important tools in combinatorics", one describes a finite set from two perspectives leading to two distinct expressions for the size of the set. Since both expressions equal the size of the same set, they equal each other. Examples Multiplication (of natural numbers) commutes This is a simple example of double counting, often used when teaching multiplication to young children. In this context, multiplication of natural numbers is introduced as repeated addition, and is then shown to be commutative by counting, in two different ways, a number of items arranged in a rectangular grid. Suppose the grid has n rows and m columns. We first count the items by summing n rows of m items each, then a second time by summing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Seven Bridges Of Königsberg
The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured the idea of topology. The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large islands—Kneiphof and Lomse—which were connected to each other, and to the two mainland portions of the city, by seven bridges. The problem was to devise a walk through the city that would cross each of those bridges once and only once. By way of specifying the logical task unambiguously, solutions involving either # reaching an island or mainland bank other than via one of the bridges, or # accessing any bridge without crossing to its other end are explicitly unacceptable. Euler proved that the problem has no solution. The difficulty he faced was the development of a suitable technique of analysis, and of subsequent tests that established this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lubell–Yamamoto–Meshalkin Inequality
In combinatorial mathematics, the Lubell–Yamamoto–Meshalkin inequality, more commonly known as the LYM inequality, is an inequality on the sizes of sets in a Sperner family, proved by , , , and . It is named for the initials of three of its discoverers. To include the initials of all four discoverers, it is sometimes referred to as the YBLM inequality. This inequality belongs to the field of combinatorics of sets, and has many applications in combinatorics. In particular, it can be used to prove Sperner's theorem. Its name is also used for similar inequalities. Statement of the theorem Let ''U'' be an ''n''-element set, let ''A'' be a family of subsets of ''U'' such that no set in ''A'' is a subset of another set in ''A'', and let ''ak'' denote the number of sets of size ''k'' in ''A''. Then : \sum_^n\frac \le 1. Lubell's proof proves the Lubell–Yamamoto–Meshalkin inequality by a double counting argument in which he counts the permutation In mathematics, a permuta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Number
In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The usual notation for the square of a number is not the product , but the equivalent exponentiation , usually pronounced as " squared". The name ''square'' number comes from the name of the shape. The unit of area is defined as the area of a unit square (). Hence, a square with side length has area . If a square number is represented by ''n'' points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of ''n''; thus, square numbers are a type of figurate numbers (other examples being cube numbers and triangular numbers). Square numbers are non-negative. A non-negative integer is a square number when its square root is again an integer. For example, \sqrt = 3, so 9 is a square ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Pyramidal Number
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes. As well as counting spheres in a pyramid, these numbers can be described algebraically as a sum of the first n positive square numbers, or as the values of a cubic polynomial. They can be used to solve several other counting problems, including counting squares in a square grid and counting acute triangles formed from the vertices of an odd regular polygon. They equal the sums of consecutive tetrahedral numbers, and are one-fourth of a larger tetrahedral number. The sum of two consecutive square pyramidal numbers is an octahedral number. History The pyramidal numbers were one of the few types of three-dimensional figura ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vandermonde's Identity
In combinatorics, Vandermonde's identity (or Vandermonde's convolution) is the following identity for binomial coefficients: :=\sum_^r for any nonnegative integers ''r'', ''m'', ''n''. The identity is named after Alexandre-Théophile Vandermonde (1772), although it was already known in 1303 by the Chinese mathematician Zhu Shijie.See for the history. There is a ''q''-analog to this theorem called the ''q''-Vandermonde identity. Vandermonde's identity can be generalized in numerous ways, including to the identity : = \sum_ \cdots . Proofs Algebraic proof In general, the product of two polynomials with degrees ''m'' and ''n'', respectively, is given by :\biggl(\sum_^m a_ix^i\biggr) \biggl(\sum_^n b_jx^j\biggr) = \sum_^\biggl(\sum_^r a_k b_\biggr) x^r, where we use the convention that ''ai'' = 0 for all integers ''i'' > ''m'' and ''bj'' = 0 for all integers ''j'' > ''n''. By the binomial theorem, :(1+x)^ = \sum_^ x^r. U ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree (graph Theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rooted Tree
In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Empty Graph
In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph"). Order-zero graph The order-zero graph, , is the unique graph having no vertices (hence its order is zero). It follows that also has no edges. Thus the null graph is a regular graph of degree zero. Some authors exclude from consideration as a graph (either by definition, or more simply as a matter of convenience). Whether including as a valid graph is useful depends on context. On the positive side, follows naturally from the usual set-theoretic definitions of a graph (it is the ordered pair for which the vertex and edge sets, and , are both empty), in proofs it serves as a natural base case for mathematical induction, and similarly, in recursively defined data structures is useful for defining the base case for recursion (by treating the null tree as the child of missing e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cayley's Formula
In mathematics, Cayley's formula is a result in graph theory named after Arthur Cayley. It states that for every positive integer n, the number of trees on n labeled vertices is n^. The formula equivalently counts the number of spanning trees of a complete graph with labeled vertices . Proof Many proofs of Cayley's tree formula are known. One classical proof of the formula uses Kirchhoff's matrix tree theorem, a formula for the number of spanning trees in an arbitrary graph involving the determinant of a matrix. Prüfer sequences yield a bijective proof of Cayley's formula. Another bijective proof, by André Joyal, finds a one-to-one transformation between ''n''-node trees with two distinguished nodes and maximal directed pseudoforests. A proof by double counting due to Jim Pitman counts in two different ways the number of different sequences of directed edges that can be added to an empty graph on n vertices to form from it a rooted tree; see . History The formula w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tree (graph Theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]