HOME
*





Doléans-Dade Exponential
In stochastic calculus, the Doléans-Dade exponential or stochastic exponential of a semimartingale ''X'' is the unique strong solution of the stochastic differential equation dY_t = Y_\,dX_t,\quad\quad Y_0=1,where Y_ denotes the process of left limits, i.e., Y_=\lim_Y_s. The concept is named after Catherine Doléans-Dade. Stochastic exponential plays an important role in the formulation of Girsanov's theorem and arises naturally in all applications where relative changes are important since X measures the cumulative percentage change in Y. Notation and terminology Process Y obtained above is commonly denoted by \mathcal(X). The terminology "stochastic exponential" arises from the similarity of \mathcal(X)=Y to the natural exponential of X: If ''X'' is absolutely continuous with respect to time, then ''Y'' solves, path-by-path, the differential equation dY_t/\mathrmt = Y_tdX_t/dt, whose solution is Y=\exp(X-X_0). General formula and special cases * Without any assumptions on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Calculus
Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyoshi Itô during World War II. The best-known stochastic process to which stochastic calculus is applied is the Wiener process (named in honor of Norbert Wiener), which is used for modeling Brownian motion as described by Louis Bachelier in 1900 and by Albert Einstein in 1905 and other physical diffusion processes in space of particles subject to random forces. Since the 1970s, the Wiener process has been widely applied in financial mathematics and economics to model the evolution in time of stock prices and bond interest rates. The main flavours of stochastic calculus are the Itô calculus and its variational relative the Malliavin calculus. For technical reasons the Itô integral is the mos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Martingale (probability Theory)
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. History Originally, '' martingale'' referred to a class of betting strategies that was popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins their stake if a coin comes up heads and loses it if the coin comes up tails. The strategy had the gambler double their bet after every loss so that the first win would recover all previous losses plus win a profit equal to the original stake. As the gambler's wealth and available time jointly approach infinity, their probability of eventually flipping heads approaches 1, which makes the martingale betting strategy seem like a sure thing. However, the exponential growth of the bets eventually bankrupts its users due to f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Logarithm
In stochastic calculus, stochastic logarithm of a semimartingale Ysuch that Y\neq0 and Y_-\neq0 is the semimartingale X given bydX_t=\frac,\quad X_0=0.In layperson's terms, stochastic logarithm of Y measures the cumulative percentage change in Y. Notation and terminology The process X obtained above is commonly denoted \mathcal(Y). The terminology ''stochastic logarithm'' arises from the similarity of \mathcal(Y) to the natural logarithm \log(Y): If Y is absolutely continuous with respect to time and Y\neq 0, then ''X'' solves, path-by-path, the differential equation \frac = \frac,whose solution is X =\log, Y, -\log, Y_0, . General formula and special cases * Without any assumptions on the semimartingale Y (other than Y\neq 0, Y_-\neq 0), one has\mathcal(Y)_t = \log\Biggl, \frac\Biggl, +\frac12\int_0^t\frac +\sum_\Biggl(\log\Biggl, 1 + \frac \Biggr, -\frac\Biggr),\qquad t\ge0,where c is the continuous part of quadratic variation of Y and the sum extends over the (count ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quadratic Variation
In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process. Definition Suppose that X_t is a real-valued stochastic process defined on a probability space (\Omega,\mathcal,\mathbb) and with time index t ranging over the non-negative real numbers. Its quadratic variation is the process, written as t, defined as : t=\lim_\sum_^n(X_-X_)^2 where P ranges over partitions of the interval ,t/math> and the norm of the partition P is the mesh. This limit, if it exists, is defined using convergence in probability. Note that a process may be of finite quadratic variation in the sense of the definition given here and its paths be nonetheless almost surely of infinite 1-variation for every t>0 in the classical sense of taking the supremum of the sum over all partitions; this is in particular the case for Brownian motion. More generally, the covariation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Novikov's Condition
In probability theory, Novikov's condition is the sufficient condition for a stochastic process which takes the form of the Radon–Nikodym derivative in Girsanov's theorem to be a martingale. If satisfied together with other conditions, Girsanov's theorem may be applied to a Brownian motion stochastic process to change from the original measure to the new measure defined by the Radon–Nikodym derivative. This condition was suggested and proved by Alexander Novikov. There are other results which may be used to show that the Radon–Nikodym derivative is a martingale, such as the more general criterion Kazamaki's condition, however Novikov's condition is the most well-known result. Assume that (X_t)_ is a real valued adapted process on the probability space \left (\Omega, (\mathcal_t), \mathbb\right) and (W_t)_ is an adapted Brownian motion: If the condition : \mathbb\left ^ \right\infty is fulfilled then the process : \ \mathcal\left( \int_0^t X_s \; dW_s \righ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kazamaki's Condition
In mathematics, Kazamaki's condition gives a sufficient criterion ensuring that the Doléans-Dade exponential of a local martingale is a true martingale. This is particularly important if Girsanov's theorem is to be applied to perform a change of measure. Kazamaki's condition is more general than Novikov's condition In probability theory, Novikov's condition is the sufficient condition for a stochastic process which takes the form of the Radon–Nikodym derivative in Girsanov's theorem to be a martingale. If satisfied together with other conditions, Girsanov .... Statement of Kazamaki's condition Let M = (M_t)_ be a continuous local martingale with respect to a right-continuous filtration (\mathcal_t)_. If (\exp(M_t/2))_ is a uniformly integrable submartingale, then the Doléans-Dade exponential ''Ɛ''(''M'') of M is a uniformly integrable martingale. References * Martingale theory {{probability-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with rea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semimartingale
In probability theory, a real valued stochastic process ''X'' is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes). Submartingales and supermartingales together represent a subset of the semimartingales. Definition A real valued process ''X'' defined on the filtered probability space (Ω,''F'',(''F''''t'')''t'' ≥ 0,P) is called a semimartingale if it can be decomposed as :X_t = M_t + A_t where ''M'' is a local martingale and ''A'' is a càdlàg adapted process of locally bounded variation. An R''n''-valued process ''X'' = (''X''1,…,''X''''n'') is a semimartin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Function
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow. It is also called the Cantor ternary function, the Lebesgue function, Lebesgue's singular function, the Cantor–Vitali function, the Devil's staircase, the Cantor staircase function, and the Cantor–Lebesgue function. introduced the Cantor function and mentioned that Scheeffer pointed out that it was a counterexample to an extension of the fundamental theorem of calculus claimed by Harnack. The Cantor function was discussed and popularized by , and . De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Brownian Motion
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model. Technical definition: the SDE A stochastic process ''S''''t'' is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): : dS_t = \mu S_t\,dt + \sigma S_t\,dW_t where W_t is a Wiener process or Brownian motion, and \mu ('the percentage drift') and \sigma ('the percentage volatility') are constants. The former is used to model deterministic trends, while the latter term is often used to model a set of unpredictable events occurring during this motion. Solving the SDE For an arbitrary initial va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]