Distribution (differential Geometry)
In differential geometry, a discipline within mathematics, a distribution on a manifold M is an assignment x \mapsto \Delta_x \subseteq T_x M of vector subspaces satisfying certain properties. In the most common situations, a distribution is asked to be a vector subbundle of the tangent bundle TM. Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, e.g. integrable systems, Poisson geometry, non-commutative geometry, sub-Riemannian geometry, differential topology, etc. Even though they share the same name, distributions presented in this article have nothing to do with distributions in the sense of analysis. Definition Let M be a smooth manifold; a (smooth) distribution \Delta assigns to any point x \in M a vector subspace \Delta_x \subset T_xM in a smooth way. More precisely, \Delta consists in a collection \_ of vecto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Subalgebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings (Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups of physic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contact Structure
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for ' complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem. Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, a structure on certain even-dimensional manifolds. Both contact and symplectic geometry are motivated by the mathematical formalism of classical mechanics, where one can consider either the even-dimensional phase space of a mechanical sys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integral Curve
In mathematics, an integral curve is a parametric curve that represents a specific solution to an ordinary differential equation or system of equations. Name Integral curves are known by various other names, depending on the nature and interpretation of the differential equation or vector field. In physics, integral curves for an electric field or magnetic field are known as field lines, and integral curves for the velocity field of a fluid are known as streamlines. In dynamical systems, the integral curves for a differential equation that governs a system are referred to as trajectories or orbits. Definition Suppose that F is a static vector field, that is, a vector-valued function with Cartesian coordinates (''F''1,''F''2,...,''F''''n''), and that x(''t'') is a parametric curve with Cartesian coordinates (''x''1(''t''),''x''2(''t''),...,''x''''n''(''t'')). Then x(''t'') is an integral curve of F if it is a solution of the autonomous system of ordinary differential equations, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chow–Rashevskii Theorem
In sub-Riemannian geometry, the Chow–Rashevskii theorem (also known as Chow's theorem) asserts that any two points of a connected sub-Riemannian manifold, endowed with a bracket generating distribution, are connected by a horizontal path in the manifold. It is named after Wei-Liang Chow who proved it in 1939, and Petr Konstanovich Rashevskii, who proved it independently in 1938. The theorem has a number of equivalent statements, one of which is that the topology induced by the Carnot–Carathéodory metric is equivalent to the intrinsic (locally Euclidean) topology of the manifold. A stronger statement that implies the theorem is the ball–box theorem. See, for instance, and . See also * Orbit (control theory) The notion of orbit of a control system used in mathematical control theory is a particular case of the notion of orbit in group theory. Definition Let \dot q=f(q,u) be a \ ^\infty control system, where belongs to a finite-dimensional manifol ... Refere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frobenius Theorem (differential Topology)
In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first-order homogeneous linear partial differential equations. In modern geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability conditions for the existence of a foliation by maximal integral manifolds whose tangent bundles are spanned by the given vector fields. The theorem generalizes the existence theorem for ordinary differential equations, which guarantees that a single vector field always gives rise to integral curves; Frobenius gives compatibility conditions under which the integral curves of ''r'' vector fields mesh into coordinate grids on ''r''-dimensional integral manifolds. The theorem is foundational in differential topology and calculus on manifolds. Introduction In its most elementary form, the theorem addresses the problem of finding a maximal set of inde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Block Matrices
In mathematics, a block matrix or a partitioned matrix is a matrix that is '' interpreted'' as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices. Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned. This notion can be made more precise for an n by m matrix M by partitioning n into a collection \text, and then partitioning m into a collection \text. The original matrix is then considered as the "total" of these groups, in the sense that the (i, j) entry of the original matrix corresponds in a 1-to-1 way with some (s, t) offset entry of some (x,y), where x \in \text and y \in \text. Block matrix algebra arises in general from biproducts in categories of matrices ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
G-structure On A Manifold
In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''-subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(''n'')-structure defines a Riemannian metric, and for the special linear group an SL(''n'',R)-structure is the same as a volume form. For the trivial group, an -structure consists of an absolute parallelism of the manifold. Generalising this idea to arbitrary principal bundles on topological spaces, one can ask if a principal G-bundle over a group G "comes from" a subgroup H of G. This is called reduction of the structure group (to H). Several structures on manifolds, such as a complex structure, a symplectic structure, or a Kähler structure, are ''G''-structures with an additional integrability con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Submanifold
In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. Formal definition In the following we assume all manifolds are differentiable manifolds of class ''C''''r'' for a fixed , and all morphisms are differentiable of class ''C''''r''. Immersed submanifolds An immersed submanifold of a manifold ''M'' is the image ''S'' of an immersion map ; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections. More narrowly, one can require that the map be an injection (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset ''S'' together with a topology and differentia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Bracket
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called ''canonical transformations'', which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by q_i and p_i, respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself H =H(q, p, t) as one of the new canonical momentum coordinates. In a more general sense, the Poisson bracket is used to define a Poisson algebra, of which the algebra of functions on a Poisson manifold is a special case. There are ot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |